摘 要: | 光伏组件的遮挡物识别是光伏运维系统中不可或缺的环节,传统识别算法多依赖人工巡检,成本高昂且效率低下。基于卷积神经网络,提出了一种面向光伏组件的遮挡物识别算法PORNet。通过引入特征金字塔,构建多个分辨率下具有丰富语义信息的图像特征,提升对遮挡物尺度和密度的敏感性。通过特征自选择,筛选出语义最具代表性的特征图,以加强物体环境的语义信息表达。用筛选出的特征图完成遮挡物识别,从而提升识别准确率。在自建光伏组件落叶遮挡数据集上进行了实验比较和分析,并对识别性能进行了评估,通过与现有物体识别算法相比,所提算法的准确率和召回率分别提升了9.21%和15.79%。
|