首页 | 本学科首页   官方微博 | 高级检索  
     

基于彩色三要素的无参考对比度失真图像质量评价方法
引用本文:丁盈秋,杨杨,成茗,张卫明. 基于彩色三要素的无参考对比度失真图像质量评价方法[J]. 北京航空航天大学学报, 2022, 48(8): 1418-1427. DOI: 10.13700/j.bh.1001-5965.2021.0509
作者姓名:丁盈秋  杨杨  成茗  张卫明
作者单位:1.安徽大学 电子信息工程学院,合肥 230601
基金项目:安徽省高等学校自然科学基金KJ2021A0016国家自然科学基金61502007国家自然科学基金61871411
摘    要:图像质量评价是图像处理领域中基本且具有挑战性的问题。对比度失真对图像质量的感知影响较大,目前针对对比度失真图像的无参考图像质量评价研究相对较少。基于此,提出了基于彩色三要素的无参考对比度失真图像质量评价方法,利用彩色三要素的亮度、色调和饱和度3个参数实现了对比度失真图像的质量评价方法。在亮度方面,提取矩特征及图像直方图与均匀分布之间的Kullback-Leibler散度特征。在色调和饱和度方面,分别在HSV空间的H和S通道中提取颜色加权局部二值模式(LBP)直方图特征。利用AdaBoosting BP神经网络训练预测模型。在5个标准图像数据库中进行广泛的实验分析和交叉验证,结果表明,所提方法与现有的对比度失真图像质量评价方法相比,性能有明显的提升。

关 键 词:图像质量评价  对比度失真  HSV颜色空间  无参考  彩色三要素  BP神经网络
收稿时间:2021-09-02

No reference quality assessment method for contrast-distorted images based on three elements of color
Affiliation:1.School of Electronic and Information Engineering, Anhui University, Hefei 230601, China2.Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China3.School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230027, China
Abstract:Image quality assessment is a basic and challenging problem in the field of image processing, among which the contrast distortion has a greater impact on the perception of image quality. However, there is relatively little research on the no-reference image quality assessment of contrast-distorted images. This paper proposes a no-reference contrast-distorted image quality assessment method based on the three elements of color. The three parameters of brightness, hue and saturation of the three elements of color are used to realize the assessment of contrast-distorted images. First, in terms of brightness, the moment feature and the Kullback-Leibler divergence between the image histogram and the uniform distribution are extracted. Secondly, in terms of hue and saturation, the color-weighted local binary patterns (LBP) histogram features are extracted from the H and S channels of the HSV space, respectively. Finally, the AdaBoosting BP neural network is used to train the prediction model. Through extensive experimental analysis and cross-validation in five standard image databases, the experimental results show that the performance of this method is significantly improved compared with the existing contrast-distorted image quality assessment methods. 
Keywords:
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号