首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the infrared characteristics of the rocket nozzle
Authors:Zhang   X.-Y. Cai   G.-B.
Affiliation:South China University of Technology;
Abstract:Investigation of the infrared characteristics of a rocket nozzle is very important for the study of infrared initiating technology. The Narrow-Band Zone model is developed for that purpose. The spectral transmission and absorption factors are introduced, and the equations between radiative heat flux and the temperature of waill surfaces and gas are developed. The radiative heat transfer in one axisymmetric cylindrical enclosure filled with homogeneous radiative participating medium is computed with the Narrow-Band Zone model and compared with those in the reference documents. The comparison shows good agreement. The radiative heat transfer to the nozzle of one rocket engine is also calculated with the Narrow-Band Zone model, and the outgoing radiative energy flux and energy rate integrated in a mid-wave infrared band 2-6 pm, a long-wave infrared band 8-14 pm and the full wave band are analyzed. The following conclusions can be derived: the spectral radiation from the inlet and outlet of the nozzle show apparent spectral discontinuity, which appears greater in the 2.7-2.95 pm than in the neighboring wave band. The spectral outgoing radiative energy flux of nozzle wail is similar to that of gray body, which decreases with wavelength in 2-14 pm. The outgoing radiative energy flux on the nozzle wall is greater in the cylindrical and contracting section of nozzle, but smaller in the divergent section, which is determined by temperature. The nozzle of the rocket engine radiates most energy in the mid-wave surfaces by absorption. The most important feature of gas radiation is the strong selection of the waveband, so the detailed study of the infrared characteristics of nozzle of the rocket engine should be carried out on narrow-band computation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号