首页 | 本学科首页   官方微博 | 高级检索  
     

基于SMO—SVR的飞机舵面损伤故障趋势预测
引用本文:董磊,任章,李清东. 基于SMO—SVR的飞机舵面损伤故障趋势预测[J]. 北京航空航天大学学报, 2012, 38(10): 1300-1305
作者姓名:董磊  任章  李清东
作者单位:北京航空航天大学飞行器控制一体化技术重点实验室,北京,100191;北京航空航天大学飞行器控制一体化技术重点实验室,北京,100191;北京航空航天大学飞行器控制一体化技术重点实验室,北京,100191
基金项目:国家自然科学基金资助项目(60874117,61101004)
摘    要:飞机舵面出现损伤时,为了更准确的预测状态参量变化情况,提出了一种改进的序贯最小优化支持向量回归(SMO-SVR, Sequential Minimal Optimization Support Vector Regression)预测方法.采用改进C-C平均方法对多元时间序列进行相空间重构,以确定最优嵌入维数m和延迟时间τd.根据所求mτd建立加权SVR预测模型,并调整了SMO算法的停机准则.利用区间自适应粒子群算法(IAPSO, Interval Adaptive Particle Swarm Optimization)优化SVR参数,以提高参数优化速度.为了验证改进算法的有效性,针对飞机方向舵损伤故障趋势进行了预测和分析,并与径向基函数神经网络(RBFNN, Radial Basis Function Neural Network)方法进行了对比,仿真结果表明SMO-SVR预测模型具有很好的预测能力.

关 键 词:故障趋势预测  支持向量回归  序贯最小优化  舵面损伤  相空间重构
收稿时间:2012-06-07

Fault prediction for aircraft control surface damage based on SMO-SVR
Dong Lei Ren Zhang Li Qingdong. Fault prediction for aircraft control surface damage based on SMO-SVR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1300-1305
Authors:Dong Lei Ren Zhang Li Qingdong
Affiliation:Science and Technology on Aircraft Control Laboratory, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:In order to predict changes more accurately when the surface of aircraft damaged,an algorithm based on improved sequential minimal optimization support vector regression(SMO-SVR) was presented.This algorithm reconstructed the phase space of multivariate and nonlinear time series using improved C-C average method to determine the embedding dimension m and the delay time τd.Then,a weighted SVR model was built according to m and τd,and in which the halt criterion of SMO was modified.The parameters of SVR were optimized by interval adaptive particle swarm optimization(IAPSO) to improve the efficiency of parameter optimization.In order to verify the validity of the algorithm,the prediction and analysis of surface damage trend were performed.Comparing with the radial basis function neural network(RBFNN) method,the simulation result demonstrates that the improved SMO-SVR prediction model has good predictive ability.
Keywords:fault prediction  support vector regression  sequential minimal optimization  surface damage  phase space reconstruction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号