首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radio emissions from Uranus
Authors:JW Warwick  DR Evans  JH Romig  CB Sawyer
Institution:

*Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado in Boulder, USA

aRadiophysics Incorporated, 5475 Western Avenue, Boulder, CO 80301, U.S.A.

Abstract:The Voyager Planetary Radio Astronomy Experiment detected strong 40 kHz to 850 kHz radio emissions from Uranus after closest approach and somewhat weaker emissions, but none above 100 kHz before closest approach, on the dayside of Uranus. The time variations of these emissions closely match Uranus' rotation, in a period of 17.24 h, and are evidently controlled by the strength and shape of its magnetic field. Throughout the entire encounter the polarization of the emission was approximately lefthand, corresponding to extraordinary mode. The emission associated with the nightside pole was a relatively smooth continuum (free of bursts) with a Gaussian-shaped rise and fall at low frequencies, 200 kHz for example, but a Gaussian with a central dip nearly to zero lasting a little less than two hours at frequencies above 400 kHz. Half a rotation later, when Voyager was near the magnetic equator of Uranus and farthest from the nightside dipole tip, the continuum emission was absent, but very strong, narrowband impulsive bursts appeared. Voyager successfully acquired one brief (24 seconds long) record of high time resolution radio observations in the range 500 to 700 kHz. This record, which was made near closest approach, shows a hierarchy of fast variations. Several days after closest approach, at the times of bowshock crossings outbound, the continuum emissions were modulated strongly in a manner suggestive of the presence of waves in the bowshock regions.

The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately ten-minute period, and, as early as several days before closest approach in the frequency range below 100 kHz, very intense isolated bursts lasting tens of minutes.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号