首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MIC - a self deploying magnetically inflated cable system for large scale space structures
Institution:1. College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China;2. College of Physics and Information Technology, Shaanxi Normal University, Xi''an 710062, China
Abstract:A new approach, termed MIC (Magnetically Inflated Cable) that enables large, lightweight very strong and rigid space structures is described. MIC would be launched as a compact package of coiled superconducting (SC) cables. After reaching orbit, the cables would be cryogenically cooled and electrically energized by a small power source. The resultant repulsion magnetic forces between the DC currents in the SC cables automatically cause the coiled launch package to self deploy into the final large space structure. The SC cables are held in place by a distributed network of high tensile strength tethers (e.g., Spectra material), creating a very stiff, rigid truss structure that strongly resists bending and torsional, etc. movements, without the need for gravity gradient stabilization. A linear quadrupole (LQ) MIC configuration is described that is suitable for large solar power satellites, space stations, space hotels, propellant tanks, manned Mars spacecraft, etc. The LQ has 2 long SC dipole loops, of horizontal width W, length L, and opposite magnetic polarity, which are vertically separated by distance W, producing a long truss structure of square cross-section (width W) with the 4 SC cables at the corners of the square. The SC currents are opposite in adjacent cables, yielding an outwardly directed net radial force on each cable. The ends of each SC loop experience outwards longitudinal forces. The magnetic forces are very strong, even for modest supercurrents. For example, a 4 meter square truss with I = 250 kiloamp has an outwards radial force of 220 kg per meter of cable. and 5250 kg outwards longitudinal force at the ends of each SC loop. The network of restraining tensile lines can support lightweight structures, including solar panels, propellant tankage, habitat modules, power transmission lines, etc. The design of a 1 kilometer long, 4 meter square cross section MIC truss for solar power satellites is described. The MIC launch package fits within the length/weight constraints of the shuttle bay, and includes all of the helium coolant lines, thermal insulation, and refrigeration equipment required.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号