摘 要: | 针对高分辨率合成孔径雷达(Synthetic Aperture Radar, SAR)图像中道路目标难以有效提取的问题,提出一种融合马尔可夫随机场(Markov Random Field, MRF)分割与数学形态学处理的高分辨率SAR图像道路提取算法。该算法首先利用直方图均衡化和增强Lee滤波对SAR图像进行预处理,实现道路的边缘增强,抑制相干斑噪声;进而利用基于条件迭代模式(Iterated Conditional Mode, ICM)的MRF对SAR图像中的道路目标进行初分割;再用数学形态学填充空洞,平滑道路边缘;最后,基于道路的几何特征,使用偏心率、矩阵度、复杂度等因子去除虚警,从而提取出道路目标。利用该文算法对两块实际高分辨率SAR图像进行道路目标提取,均可以取得90%以上的正确道路提取率,表明本文算法具有较高的道路提取精度。
|