首页 | 本学科首页   官方微博 | 高级检索  
     

复合舵机的神经网络自校正控制
引用本文:温肇东,王占林,祁晓野,鲍莉娜. 复合舵机的神经网络自校正控制[J]. 北京航空航天大学学报, 2007, 33(11): 1295-1298
作者姓名:温肇东  王占林  祁晓野  鲍莉娜
作者单位:1.北京航空航天大学 自动化科学与电气工程学院, 北京 100083
摘    要:针对复合舵机的时变和非线性特性,提出了神经网络自校正控制方法.用改进的非线性自回归滑动平均模型(NARMA)对复合舵机进行动态建模,采用多层感知器神经网络辨识舵机非线性模型,由广义逆思想设计出控制器,并根据被控对象与辨识模型间误差在线调整网络权值,进而修正控制律,实现了复合舵机的自校正控制.仿真结果表明,在模型有时变及非线性因素的情况下,此方法仍能得到较好的控制效果. 

关 键 词:舵机   非线性   神经网络   系统辨识   自校正控制
文章编号:1001-5965(2007)11-1295-04
收稿时间:2006-11-28
修稿时间:2006-11-28

Artificial-neural-network adaptive control of compound actuator
Wen Zhaodong,Wang Zhanlin,Qi Xiaoye,Bao Lina. Artificial-neural-network adaptive control of compound actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(11): 1295-1298
Authors:Wen Zhaodong  Wang Zhanlin  Qi Xiaoye  Bao Lina
Affiliation:1.School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China2. Department of Integration Engineering, China Academy of Space Technology, Beijing 100086, China
Abstract:To solve time-varying and nonlinear problem of the compound actuator,the neural-network adaptive control principle was proposed.Establish the dynamic model of compound actuator using nonlinear auto-regressive moving average model,multi-layer perception neural network was used to identify the nonlinear model.The controller was based on the theory of generalized inverse and the network weights were deduced with respect to the error between the object and the identified model.The self-turning control was realized in combination with control-algorithm modify online.The simulation results show that this control scheme has good effect on the control of compound actuator under the model having time-varying and nonlinear character.
Keywords:actuator  nonlinear  neural networks  system identification  self-turning control
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号