首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的突防控制博弈对象匹配方法CSCD
引用本文:李士刚,彭一洋,程笠. 基于深度学习的突防控制博弈对象匹配方法CSCD[J]. 导航定位与授时, 2022, 0(4): 108-114
作者姓名:李士刚  彭一洋  程笠
作者单位:海装驻上海地区第六军事代表室,上海 201109;上海航天控制技术研究所,上海 201109
摘    要:针对基于博弈理论设计应对多枚拦截弹的协同突防控制方案时需要确定博弈对象的问题,提出了一种基于长短时记忆(LSTM)网络的拦截弹攻击对象匹配方法。基于传统防空导弹飞行时序与流程构建拦截弹飞行轨迹库,以轨迹库为训练样本对LSTM网络进行训练,并以此为基础构建航迹预测模型与对象匹配模型,实现对拦截弹攻击对象的识别。仿真结果表明,该方法能够有效识别拦截弹拦截目标,为后续的巡航弹突防研究提供支撑。

关 键 词:拦截弹  对象匹配  长短时记忆网络  航迹预测

Competitor Matching Method for Penetration Control Based on Deep Learning
LI Shi-gang,PENG Yi-yang,CHEN LI. Competitor Matching Method for Penetration Control Based on Deep Learning[J]. Navigation Positioning & Timing, 2022, 0(4): 108-114
Authors:LI Shi-gang  PENG Yi-yang  CHEN LI
Affiliation:The 6th Military Representative Office of Naval Equipment Department Stationed in Shanghai, Shanghai 201109, China;Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
Abstract:For the problem that the competitor needs to be identified when designing a cooperative penetration control scheme against multiple interceptors based on game theory, an attack object matching method of interceptor missile based on long short-term memory (LSTM) network is proposed. Based on the flight sequence and process of the traditional interceptor missile, the interceptor missile flight trajectory library is constructed, and the LSTM network is trained with the trajectory database as the training sample. At the same time, based on this, a track prediction model and an object matching model are constructed to realize the target recognition of the interceptor. The simulation results show that the method can effectively identify the interceptor target and provide support for the follow-up cruise missile penetration research.
Keywords:Interceptor missile   Object matching   Long short-term memory network   Track prediction
本文献已被 维普 等数据库收录!
点击此处可从《导航定位与授时》浏览原始摘要信息
点击此处可从《导航定位与授时》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号