首页 | 本学科首页   官方微博 | 高级检索  
     

不可微数学规划的高阶对偶性
引用本文:陈凌蕙,徐伟. 不可微数学规划的高阶对偶性[J]. 南昌航空工业学院学报, 2008, 22(4)
作者姓名:陈凌蕙  徐伟
作者单位:南昌航空大学,江西,南昌,330063;南昌航空大学,江西,南昌,330063
摘    要:文章首先引入了一类不可微数学规划的高阶Mond-Weir对偶模型以及高阶V-不变凸、高阶广义V-不变吐的概念。然后,在ShashiK.Mishra和Norma.G.Rueda所做工作的基础上,对于上述高阶对偶模型建立了高阶V-不变凸条件下的弱埘偶和强对偶理论。最后,进一步在更弱的高阶广义V-不变凸条件下的建立了Mond-Weir型对偶模型的弱对偶和强对偶理论。

关 键 词:不可微数规划  高阶Mond-Weir对偶模型  高阶V-不变凸  弱对偶  强对偶

Higher-order V-invexity and Higher-order Duality in Non-differentiable Mathematical Programming
CHEN Ling-hui,XU wei. Higher-order V-invexity and Higher-order Duality in Non-differentiable Mathematical Programming[J]. Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition), 2008, 22(4)
Authors:CHEN Ling-hui  XU wei
Abstract:In this paper,we introduce a class of Mond-weir higher-order duality in non-differentiable mathematical programming problem and the notions of higher-order V-invexity and higher-order generalized V-invexity. Moreove, based on the researches of Mishra and Rueda.the weak and strong duality theorems are established under higher-order V-invexity assumption. Finally, under the weaker higher-order generalized V-invexity,the weak and strong duality theorems are established.
Keywords:non-differentiable mathematical programming  Mond-weir higher-order duality  higher-order V-invexity  higher-order generalized V-invexity  weak duality  strong duality
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号