首页 | 本学科首页   官方微博 | 高级检索  
     

HINet: 一种面向冰雹识别的多源数据融合网络
引用本文:张小雯,郁培雯,商建,华珊,张启绍. HINet: 一种面向冰雹识别的多源数据融合网络[J]. 遥测遥控, 2024, 45(4): 45-56
作者姓名:张小雯  郁培雯  商建  华珊  张启绍
作者单位:1.国家气象中心 北京 100081;2.安阳国家气候观象台 安阳 455000;3.南京信息工程大学人工智能学院 南京 210044;4.国家卫星气象中心(国家空间天气监测预警中心) 北京 100081;5.许健民气象卫星创新中心 北京 100081;6.中国气象局遥感卫星辐射测量和定标重点开放实验室 北京 100081
基金项目:国家重点研发计划项目(2022YFC3004104);中国气象局创新发展专项项目(CXFZ2024J001);中国气象局水文气象重点开放基金项目(23SWQXZ001);风云卫星应用先行计划2023(FY-APP-ZX-2023.01);安阳国家气候观象台开放研究基金课题(AYNCOF202401)
摘    要:冰雹天气具有突发性和局地性强,以及破坏力大的特点。尽管地面自动站、雷达和卫星等获取的观测资料在冰雹识别中发挥了一定的作用,但单一观测资料的局限性导致冰雹识别虚警率较高和准确率较低。因此,亟需构建基于多源高分辨率观测的冰雹识别技术。本文提出了一种面向冰雹识别的多源数据融合网络,该深度学习方法利用时空特征提取模块、多源数据特征融合模块和UCUNet(U Connection Unet,U形连接卷积神经网络)识别模块,充分挖掘冰雹发生时FY4B(风云四号B星)、天气雷达和数值模式等多源数据的时空特征,并创新地加入地形高度、坡度、坡向等作为冰雹识别因子。为评估所提网络方法的性能,本文进行了系列实验,并将实验结果与真实标签数据进行对比。结果显示,HINet(Hail Identification Net,冰雹识别网络)能够充分利用多源数据,在复杂地形条件下有效改善冰雹识别结果,在冰雹研究和识别中具有较高的准确性和实用性。

关 键 词:冰雹识别  深度学习  时空特征提取  多源数据特征融合  复杂地形
收稿时间:2024-05-20
修稿时间:2024-06-17

HINet: A Multi-source Data Fusion Network for Hail Identification
ZHANG Xiaowen,YU Peiwen,SHANG Jian,HUA Shan,ZHANG Qishao. HINet: A Multi-source Data Fusion Network for Hail Identification[J]. Telemetry & Telecontrol, 2024, 45(4): 45-56
Authors:ZHANG Xiaowen  YU Peiwen  SHANG Jian  HUA Shan  ZHANG Qishao
Affiliation:1.National Meteorological Center, Beijing 100081, China;2.Anyang National Climatological Observatory, Anyang 455000, China;3.School of Artificial Intelligence, Nanjing University of Information Science & Technology, Nanjing 210044, China;4.National Satellite Meteorological Center (National Centre for Space Weather), Beijing 100081, China;5.Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China;6.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, Beijing 100081, China
Abstract:Hailstorms are characterized by their suddenness, localized nature and high destructive power. Although observations acquired by ground-based automatic stations, radars and satellites play a certain role in hail identification, the limitation of single observation data leads to a high false alarm rate and low accuracy rate in hail identification. Therefore, there is an urgent need to construct a hail identification technology based on multi-source high-resolution observation. In this paper, a multi-source data fusion network for hail recognition is proposed. The deep learning method utilizes the spatio-temporal feature extraction module, the multi-source data feature fusion module, and the UCUNet (U Connection Unet) recognition module to fully exploit the spatio-temporal features of the multi-source data such as FY4B (FengYun-4B star) satellites, weather radar, and numerical models when hail occurs, and innovatively adds the topographic height, slope, and slope direction as hail recognition factors. In order to evaluate the performance of the proposed network method, this paper conducts a series of experiments and compares the experimental results with real labeled data. The results show that HINet (Hail Identification Net) can make full use of multi-source data and effectively improve the hail identification results under complex terrain conditions. The network model proposed in this paper has high accuracy and practicality in hail research and identification.
Keywords:Hail identification  Deep learning  Spatio-temporal feature extraction  Multi-source data feature fusion  Complex terrain
点击此处可从《遥测遥控》浏览原始摘要信息
点击此处可从《遥测遥控》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号