首页 | 本学科首页   官方微博 | 高级检索  
     

改进RBF网络学习算法在卫星姿态控制中的应用
引用本文:连葆华. 改进RBF网络学习算法在卫星姿态控制中的应用[J]. 上海航天, 2002, 19(2): 27-32,36
作者姓名:连葆华
作者单位:哈尔滨工业大学,深空探测基础研究中心,黑龙江,哈尔滨,150001
摘    要:提出了一种基于神经网络扰动补偿的姿态控制方法,首先,针对RBF网络的常用学习算法--正交最小二乘(OLS)算法,提出了改进的规范正交最小二乘(ROLS)算法:然后,基于某型小卫星的姿态控制问题,设计了高精度定向阶段的神经网络补偿控制器。仿真结果表明,改进的ROLS算法是有效的,神经网络补偿控制方案是可行的。

关 键 词:学习算法 RBF神经网络 姿态控制 卫星 扰动补偿
文章编号:1006-1630(2002)02-0027-06

An Improved Algorithm of RBF Neural Networks and Its Application in Attitude Control of Satellite
LIAN Bao hua. An Improved Algorithm of RBF Neural Networks and Its Application in Attitude Control of Satellite[J]. Aerospace Shanghai, 2002, 19(2): 27-32,36
Authors:LIAN Bao hua
Abstract:This paper presents a control scheme based on NN disturbance compensation for attitude control of satellite. At first, we present an improved algorithm of RBF NN from the general algorithm, regulation orthogonal least square (ROLS). Then, base on the problem of attitude control of a satellite under development, we design a NN compensation controller for high accuracy orientation phase. The simulation results show that the improved algorithm is efficient and the NN compensation scheme is feasible.
Keywords:RBF NN  Altitude control  Satellite  Disturbance compensation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号