首页 | 本学科首页   官方微博 | 高级检索  
     

融合明度特征的V-SAD立体匹配算法
引用本文:李一能,曾庆化,张月圆,刘建业,张逸舟. 融合明度特征的V-SAD立体匹配算法[J]. 导航定位与授时, 2021, 8(4): 90-97. DOI: 10.19306/j.cnki.2095-8110.2021.04.011
作者姓名:李一能  曾庆化  张月圆  刘建业  张逸舟
作者单位:南京航空航天大学导航研究中心,南京211106;南京航空航天大学导航研究中心,南京211106;南京航空航天大学先进飞行器导航、控制与健康管理工业和信息化部重点实验室,南京211106;南京航空航天大学江苏省物联网与控制技术重点实验室,南京211106
基金项目:国家自然科学基金(61533008,61374115,61603181); 中央高校基本科研业务费专项资金(NS2018021)
摘    要:针对SAD算法难以对图像中纯色与弱纹理部分进行准确匹配的问题,提出了将HSV空间明度特征与SAD算法相融合的立体匹配算法,称为V-SAD算法.首先将图像从RGB空间转化至HSV空间,并根据H、S、V值将像素点按照颜色分为10类,同时得到明度特征图.然后结合SAD算法需要的灰度特征图计算匹配代价,得到初步的视差图.接着,...

关 键 词:立体匹配  HSV彩色空间  图像分割  SAD算法  边缘生长

V-SAD Stereo Matching Algorithm Combining Value Features
LI Yi-neng,ZENG Qing-hu,ZHANG Yue-yuan,LIU Jian-ye,ZHANG Yi-zhou. V-SAD Stereo Matching Algorithm Combining Value Features[J]. Navigation Positioning & Timing, 2021, 8(4): 90-97. DOI: 10.19306/j.cnki.2095-8110.2021.04.011
Authors:LI Yi-neng  ZENG Qing-hu  ZHANG Yue-yuan  LIU Jian-ye  ZHANG Yi-zhou
Affiliation:Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China;Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China; Key Laboratory of Navigation, Guidance and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China; Jiangsu Key Laboratory of Internet of Things and Control Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China
Abstract:Aiming at the problem that the SAD algorithm is difficult to match the parts with solid color and weak texture in the image effectively, this paper proposes a stereo matching algorithm called V-SAD algorithm. This algorithm fuses SAD algorithm with the value features in HSV space. Firstly, the image is converted from RGB space to HSV space, and all pixels are divided into 10 color categories according to values of H, S, and V. The value feature map can be obtained at the same time. Secondly, the matching cost is calculated combining the gray feature map required by the SAD algorithm with the value feature map to obtain a preliminary disparity map. Then the image is segmented according to the color information in HSV space, and the independent connected domains of the segmented blocks are solved in combination with the mathematical morphology method. Afterwards, the edge growth method is used to restore the disparity map of each connected domain. Finally, left-right consistency check is applied to improve the accuracy of disparity map. The experimental results show that it is effective to measure the similarity between the matching points of the solid color and the weakly textured area by using the value features of the image. The V-SAD algorithm improves the SAD algorithm''s matching result in regions with weak texture and solid color, and the average mismatch rate decreases by 13.02%.
Keywords:Stereo matching   HSV color space   Image segmentation   SAD algorithm   Edge growth
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《导航定位与授时》浏览原始摘要信息
点击此处可从《导航定位与授时》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号