首页 | 本学科首页   官方微博 | 高级检索  
     

径向基过程神经元网络及其应用研究
引用本文:许少华,何新贵. 径向基过程神经元网络及其应用研究[J]. 北京航空航天大学学报, 2004, 30(1): 14-17
作者姓名:许少华  何新贵
作者单位:北京航空航天大学 计算机学院, 北京 100083
摘    要:提出了一种径向基过程神经元网络,该网络模型为3层前向结构,由输入层、径向基过程神经元隐层和输出层组成.输入层到隐层的变换是非线性的,隐层到输出层的变换是线性的.隐层神经元完成对过程式输入信息的模式匹配和对时间的聚合运算,输出层对输入模式作出响应.在输入空间中引入函数正交基,将输入函数在正交基下展开,利用基函数的正交性,简化聚合运算过程.给出了相应的学习算法,并以旋转机械故障诊断问题为例验证了模型和方法的有效性. 

关 键 词:神经网络   时间函数   算法   径向基过程神经网络   径向基函数
文章编号:1001-5965(2004)01-0014-04
收稿时间:2002-09-11
修稿时间:2002-09-11

Research and applications of radial basis process neural networks
Xu Shaohua,He Xingui. Research and applications of radial basis process neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(1): 14-17
Authors:Xu Shaohua  He Xingui
Affiliation:School of Computer Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:A radial basis process neural networks model was proposed, which is a kind of three-layer forward structure constituted of input layer, radial basis function hidden layer and output layer. The transformation from input layer to hidden layer is nonlinear and that from hidden layer to output layer is linear. The neurons of hidden layer perform the pattern matching of process input information and aggregation operation of time and respond to the input patterns. Through inducting function orthogonal basis into input space, input function can be expanded under the orthogonal basis and aggregation operation process can be simplified by using the orthogonality of basis function. The corresponding learning algorithms were given and the effectiveness of this method was proved by rotation machinery fault diagnoses.
Keywords:neural networks  time functions  algorithm  radial basis process neural networks  radial basis function
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号