首页 | 本学科首页   官方微博 | 高级检索  
     

涡轮叶片早期裂纹的三维叶尖间隙EEMD能量熵融合诊断方法
引用本文:黄鑫,张小栋,刘洪成. 涡轮叶片早期裂纹的三维叶尖间隙EEMD能量熵融合诊断方法[J]. 航空动力学报, 2020, 35(5): 918-927. DOI: 10.13224/j.cnki.jasp.2020.05.003
作者姓名:黄鑫  张小栋  刘洪成
作者单位:西安交通大学机械工程学院,西安710049,西安交通大学机械工程学院,西安710049;西安交通大学现代设计及转子轴承系统教育部重点实验室,西安710049,西安交通大学机械工程学院,西安710049,西安交通大学机械工程学院,西安710049,西安交通大学机械工程学院,西安710049,西安交通大学机械工程学院,西安710049
基金项目:国家自然科学基金(51575436)
摘    要:为了解决航空发动机涡轮叶片早期裂纹故障信号微弱、难以识别的问题,提出一种基于三维叶尖间隙集成经验模态分解(EEMD)能量熵融合的涡轮叶片早期裂纹诊断方法。采集涡轮叶片三维叶尖间隙信息,利用EEMD分别对三维叶尖间隙各维信号进行处理,得到相应的固有模态函数(IMF),以此计算每一维信号分量EEMD能量熵,构建能表征叶片裂纹状态的不同EEMD能量熵高维矢量集。建立多个堆叠自动编码器(SAE)分别对各高维矢量集进行特征学习并提取所学习的深层特征表达。利用支持向量机算法(SVM)和遗传算法(GA)融合各维深层特征以综合不同维度信息进而充分判定叶片裂纹状态。通过涡轮叶片裂纹诊断试验,结果表明:所提方法能有效提高叶片早期裂纹诊断精度,其平均准确率达到98.415%,标准差仅为0.697%,具有很好的稳定性、泛化性和自适应性。

关 键 词:涡轮叶片  三维叶尖间隙  信息融合  集成经验模态分解(EEMD)  堆叠自动编码器(SAE)  故障诊断
收稿时间:2019-12-06

Approach to early crack diagnosis of turbine blade based on EEMD energy entropy fusion of three-dimensional tip clearance
ZHANG Yingjie,ZHANG Xiaodong,LIU Hongcheng. Approach to early crack diagnosis of turbine blade based on EEMD energy entropy fusion of three-dimensional tip clearance[J]. Journal of Aerospace Power, 2020, 35(5): 918-927. DOI: 10.13224/j.cnki.jasp.2020.05.003
Authors:ZHANG Yingjie  ZHANG Xiaodong  LIU Hongcheng
Abstract:Considering that the early crack signal of aero-engine turbine blade is weak and difficult to identify, a diagnosis method was proposed based on ensemble empirical modal decomposition (EEDM) energy entropy fusion of three-dimensional tip clearance. Three-dimensional tip clearance signals of turbine blade were collected and decomposed by using the EEMD to obtain corresponding three-dimensional intrinsic mode functions (IMFs) and calculate the EEMD entropy value of each dimensional signal in order to form different high-dimensional vector sets representing the crack fault. Several stacked autoencoders (SAE) were constructed to learn the high-level features from each high-dimensional vector set and further extract the in-depth feature expression acquired by each SAE. The support vector machine (SVM) algorithm and genetic algorithm (GA) were used to fuse these different high-level features in order to confirm adequately the early crack fault of turbine blades. Results show that the proposed method can fully dig out characteristic information of the early crack, and effectively improve the diagnosis accuracy, yielding an average accuracy of 98.415%, and its standard deviation is only 0.697%, showing its good stability, adaptivity and generalization ability.
Keywords:turbine blade  three-dimensional tip clearance  information fusion  ensemble empirical modal decomposition (EEMD)  stacked autoencoders (SAE)  fault diagnosis
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号