首页 | 本学科首页   官方微博 | 高级检索  
     


The internal constitutions of the inner planets and the moon
Authors:Gordon J. F. MacDonald
Affiliation:(1) Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA
Abstract:The internal structures of the moon, Mars, Venus, and Mercury are examined in the light of what is known about the constitution of the earth. The gravitational figure of the earth as obtained from orbits of artificial satellites is used to estimate the possible deviations from hydrostatic equilibrium on other planets. Observations of the orbital and rotational motion of the moon are consistent with the hypothesis that the interior of the moon supports density inhomogeneities of the same order as those supported by the earth. The available data on the moon are insufficient to determine whether or not the moon is differentiated. The orbits of Phobos and Deimos yield an adequate value for the moment of inertia of Mars. The moment of inertia and the mass are consistent with a metallic core containing about 10 per cent of the mass of Mars. The observations of the possible magnetic field of Mars would be of importance both to the understanding of planetary magnetic fields and elucidating the internal structure of that planet. Seismic investigations on the earth yield an equation of state for silicates to pressures of about 1 × 106 bars. This equation of state is used in determining density variation within Mars.The surface heat flow for the earth is consistent with the hypothesis that the concentration of radioactive elements is the same as that in chondritic meteorites. The observed ratio of potassium to uranium in surface and near-surface rocks is not consonant with the chondritic hypothesis. The moon can be of chondritic composition only if it is differentiated with the radioactivity concentrated in the upper few hundred kilometers. A chondritic composition for Mars would require a differentiation in excess of that consistent with its mass and moment of inertia. It is concluded that a chondritic composition is not a satisfactory chemical model for the inner planets.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号