首页 | 本学科首页   官方微博 | 高级检索  
     

用一种改进的蚁群聚类算法进行网络入侵检测
引用本文:陈军,徐蕾. 用一种改进的蚁群聚类算法进行网络入侵检测[J]. 沈阳航空工业学院学报, 2010, 27(1): 72-76
作者姓名:陈军  徐蕾
作者单位:沈阳航空工业学院计算机学院,辽宁,沈阳,110136
摘    要:针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出蚁群聚类改进算法。对已有蚁群聚类算法的结果簇做调整,从而得到更好的聚类结果。使用KDD Cup1999入侵检测数据集所作的实验结果表明,聚类效果改进明显,入侵检测率有所提高。

关 键 词:入侵检测  蚁群聚类算法  贝叶斯检测

An improved ant clustering algorithm for network instrution detection
CHEN Jun,XU Lei. An improved ant clustering algorithm for network instrution detection[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2010, 27(1): 72-76
Authors:CHEN Jun  XU Lei
Affiliation:(College of Computer Science, Shenyang Institute of Aeronautical Engineering, Liaoning Shenyang 110136)
Abstract:Focus on the problem that some data is divided into improper cluster in ant clustering algorithm, an improved ant clustering algorithm is proposed. The algorithm adjusts clusters acquired from known ant colony clustering algorithm and thus gets more precise clustering results. Experiments were carried out based on KDD Cup 1999 intrusion detection data set, the results show that our approach can significantly improve the clustering effect and obtain higher network intrusion detection rate.
Keywords:intrusion detection  ant clustering algorithm  hayes detection
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号