首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群神经网络的轮盘优化
引用本文:殷艺云,郭海丁. 基于粒子群神经网络的轮盘优化[J]. 航空动力学报, 2007, 22(9): 1578-1582
作者姓名:殷艺云  郭海丁
作者单位:南京航空航天大学,能源与动力学院,南京,210016;南京航空航天大学,能源与动力学院,南京,210016
摘    要:将粒子群算法(PSO)和BP神经网络相结合, 构建了一种新型智能结构优化算法.PSO方法除用于结构优化外, 还被用于BP神经网络的构造及网络训练, 使之可自适应调整优化.结构优化中, 以BP神经网络取代有限元方法, 通过设计变量来映射目标函数和约束, 从而大大提高了计算速度.将此方法用于轮盘结构优化, 使得轮盘体积减少了17.5%, 结果通过检验.该方法便捷、高效, 为解决工程结构优化问题提供了一个新途径. 

关 键 词:航空、航天推进系统  轮盘  粒子群算法(PSO)  神经网络  结构优化
文章编号:1000-8055(2007)09-1578-05
收稿时间:2006-09-04
修稿时间:2006-09-04

Optimization of turbine disk based on particle swarm optimization and neural network
YIN Yi-yun and GUO Hai-ding. Optimization of turbine disk based on particle swarm optimization and neural network[J]. Journal of Aerospace Power, 2007, 22(9): 1578-1582
Authors:YIN Yi-yun and GUO Hai-ding
Affiliation:College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:A new computational intelligence method was established by combining particle swarm optimization(PSO) and back propagating(BP) neural network.In addition to structural optimization,PSO is also used in BP neural network's construction and training,thus enabling self-adaptive optimization.In the structural optimization,the neural networks were used to map object function and constraints instead of finite element method(FEM),helping to accelerate greatly the computation speed.A disk model was optimized to decrease its volume by 17.5%.The results show that,this convenient and efficient method will provide a new approach to structural optimization.
Keywords:aerospace propulsion system  turbine disk  particle swarm optimization(PSO)  neural network  structural optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号