首页 | 本学科首页   官方微博 | 高级检索  
     

基于G2DPCA的SAR目标特征提取与识别
引用本文:胡利平,刘宏伟,尹奎英,吴顺君. 基于G2DPCA的SAR目标特征提取与识别[J]. 宇航学报, 2009, 30(6): 2322-2327. DOI: 10.3873/j.issn.1000-1328.2009.06.044
作者姓名:胡利平  刘宏伟  尹奎英  吴顺君
作者单位:西安电子科技大学雷达信号处理重点实验室,西安 710071
基金项目:教育部长江学者和创新团队支持计划,国家自然科学基金,国防预研项目和国防预研基金 
摘    要:给出了基于广义二维主分量分析(G2DPCA)的合成孔径雷达(SAR)图像目标特征提取 方法。与主分量分析(PCA)相比,在寻求最优投影方向时,它直接基于二维图像矩阵而不 是一维向量,在特征提取前不必将2维图像矩阵转换成1维向量。与二维主分量分析(2DPCA )相比,它可以同时去除图像行和列像素间的相关性。基于美国运动和静止目标获取与识别 (MSTAR)计划录取的数据的实验结果表明,结合预处理,G2DPCA在大大降低了特征 维数的同时,又改善了识别性能,并且正确识别率在97%以上,且对目标方位变化具有较 好的鲁棒性。

关 键 词:合成孔径雷达  运动和静止目标获取与识别  主分量分析  二维主分量分析  
收稿时间:2008-12-15

SAR Target Feature Extraction and Recognition Based on Generalized 2DPCA
HU Li-ping,LIU Hong-wei,YIN Kui-ying,WU Shun-jun. SAR Target Feature Extraction and Recognition Based on Generalized 2DPCA[J]. Journal of Astronautics, 2009, 30(6): 2322-2327. DOI: 10.3873/j.issn.1000-1328.2009.06.044
Authors:HU Li-ping  LIU Hong-wei  YIN Kui-ying  WU Shun-jun
Abstract:A feature extraction method based Generalized 2-dimensional Principal Component Analysis (G2DPCA) is present-ed for Synthetic Aperture, Radar (SAR) images. As opposed to PCA, G2DPCA directly seeks the optimal projective axes based on 2D image matrices rather than 1D image vectors, so image matrices do not need to be transformed previously into image, vectors. In contrast to 2DPCA, G2DPCA eliminates the correlations of images rows and columns simultaneously. Experimental results based the Moving and Stationary Target Acquisition and Recognition (MSTAR) data show that G2DPCA combining the SAR image pre-processing not only decreases feature dimensions sharply, but increases the correct recognition rotes, more than 97 %, and is ro-bust to the variation of target azimuth.
Keywords:Synthetic aperture radar  Moving and stationary target acquisition and recognition  Principal component analysis  2-dimensional PCA
本文献已被 万方数据 等数据库收录!
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号