首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental correction of combustion gas properties of AN-based composite solid propellants used for turbo-pump starter
Authors:Moongeun Hong
Institution:1. Department of Land, Air and Water Resources, University of California, Davis, United States;2. Department of Civil and Environmental Engineering, University of California, Davis, United States
Abstract:Solid propellant gas generators play a role as a turbo-pump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start. Among the required combustion gas properties provided by solid propellant gas generators, the combustion gas temperature should not exceed a certain temperature which may damage the turbine blades. For such purposes, phase stabilized ammonium nitrate (AN)-based propellants have been widely used with a low combustion temperature. However, gas generator propellants with ammonium nitrate have historically exhibited incomplete combustion resulting in increased flame temperatures differing significantly from equilibrium values. In consideration of design requirements, an engineering model of solid propellant gas generator was manufactured using the combustion gas properties calculated by a chemical equilibrium code and then hot-fire tests were performed. Procedures for the correction of T0, k and Mw of the combustion gas from the experimental results are introduced and the following effects on the design of the solid propellant gas generator are presented. From the experimental correction of the combustion gas properties, it is found that the amount of the propellant could be reduced while providing the same amount of available power to the turbines and consequently, the size of the gas generator could also be decreased.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号