首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acceleration tracking control for a spinning glide guided projectile with multiple disturbances
Institution:1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2. No. 203 Research Institute of China Ordnance Industries, Xi’an 710065, China
Abstract:A novel acceleration tracking controller is proposed in this paper, for a Spinning Glide Guided Projectile (SGGP) subject to cross-coupling dynamics, external disturbances, and parametric uncertainties. The cross-coupled dynamics for the SGGP are formulated with mismatched and matched uncertainties, and then divided into acceleration and angular rate subsystems via the hierarchical principle. By exploiting the structural property of the SGGP, model-assisted Extended State Observers (ESOs) are designed to estimate online the lumped disturbances in the acceleration and angular rate dynamics. To achieve a rapid response and a strong robustness, integral sliding mode control laws and sigmoid-function-based tracking differentiators are integrated into the ESO-based Trajectory Linearization Control (TLC) framework. It is proven that the acceleration tracking controller can guarantee the ultimate boundedness of the signals in the closed-loop system and make the tracking errors arbitrarily small. The superiority and effectiveness of the proposed control scheme in its decoupling ability, accurate acceleration tracking performance and anti-disturbance capability are validated through comparisons and extensive simulations.
Keywords:Spinning glide guided projectile  Cross-coupling  Acceleration tracking  Nonlinear control  Extended state observer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号