首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling and analysis of solar Doppler difference bias with arbitrary rotation axis
Institution:1. College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;2. College of Instrument Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China;3. Shanghai Institution of Satellite Engineering, Shanghai 200240, China;4. College of Information Science and Engineering, Hunan University, Changsha 410082, China
Abstract:The solar rotation causes the solar Doppler difference bias, which leads to the decline of the velocity measurement accuracy. Modeling and compensation are an effective solution. The limited model with specific geometric direction, where the solar rotation axis is perpendicular to the plane through the Sun, the Earth and Mars, was established. However, in fact, the geometric relationship among the Sun, Mars and the spacecraft is not fully in line with the hypothesis of the model due to the spacecraft orbital angle and the solar rotation axis drift. Thus, this model is not consistent with the fact. In order to solve this problem, a universal solar Doppler difference bias model, which provides the expression with arbitrary rotation axis, is established in this paper. In this method, for any point at the solar surface, four variables including the direction of the solar rotation linear velocity at this point, the distance from this point to the rotation axis, the vector from this point to Mars, and the vector from this point to the spacecraft are calculated. Based on these four variables, the solar Doppler difference bias corresponding to this point is obtained. The theoretical analysis and simulation results demonstrate that the solar Doppler difference bias model with the actual rotation axis is different from that with one of the specific rotation axes. Therefore, it is indispensable to build the proposed model for compensation. Besides, the direction of the solar rotation axis, the spacecraft-Mars-Sun angle and the spacecraft-to-Mars distance are important impact factors for the proposed model.
Keywords:Bias  Doppler navigation  Measurement  Modeling  Rotation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号