首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Highly efficient computation method for hazard quantification of uncontained rotor failure
Institution:1. Department of Aeronautical Structure Engineering, Northwestern Polytechnical University, Xi’an 710072, China;2. Shaanxi Key Laboratory of Impact Dynamics and its Engineering Applications, Northwestern Polytechnical University, Xi’an 710072, China
Abstract:Uncontained Engine Rotor Failure (UERF) can cause a catastrophic failure of an aircraft, and the quantitative assessment of the hazards related to UERF is a very important part of safety analysis. However, the procedure for hazard quantification of UERF recommended by the Federal Aviation Administration in advisory circular AC20-128A is cumbersome, as it involves building auxiliary lines and curve projections. To improve the efficiency and general applicability of the risk angle calculation, a boundary discretization method is developed that involves discretizing the geometry of the target part/structure into node points and calculating the risk angles numerically by iterating a particular algorithm over each node point. The improved efficiency and excellent accuracy for the developed algorithm was validated through a comparison with manual solutions for the hazard quantification of the engine nacelle structures of a passenger aircraft using the guidance in AC20-128A. To further demonstrate the applicability of the boundary discretization method, the proposed algorithm was used to examine the influence of the target size and the distance between the target and rotor on the hazard probability.
Keywords:Boundary discretization  Critical point  Hazard probability  Risk angle  Uncontained engine rotor failure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号