首页 | 本学科首页   官方微博 | 高级检索  
     

基于智能复合结构的可靠性分布模式自动识别
引用本文:朱家元,张恒喜,张喜斌. 基于智能复合结构的可靠性分布模式自动识别[J]. 航空学报, 2003, 24(3): 207-211
作者姓名:朱家元  张恒喜  张喜斌
作者单位:西安空军工程大学工程学院飞机与发动机工程系,陕西,西安,710038
基金项目:国防预研资助基金 (项目编号 :98J19.3.2 .JB32 0 1),空军重点型号工程课题资助
摘    要: 采用Vor onoi 向量对SOM 网络算法进行了改进, 提高了学习收敛速度。通过提取数据的统计特征,建立了可靠性分布模式自动识别样本。提出的智能自动识别模型分两层, 在SOM 网络层对概率分布模式进行自动聚类, 在支持向量机层对各聚类组进行分类学习和识别, 获得识别模型的双层记忆权值。最后采用模型对常用可靠性分布模式进行了自动识别研究。测试结果表明, 建立的可靠性分布模式自动识别模型是可行、有效的。

关 键 词:神经网络  支持向量机  机器学习  可靠性  概率分布  模式识别  
文章编号:1000-6893(2003)03-0207-05
修稿时间:2002-05-15

Reliability Distributions Automatic Identification Based on Intelligent Combined Structure Model
ZHU Jia-yuan,ZHANG Heng-xi,ZHANG Xi-bin. Reliability Distributions Automatic Identification Based on Intelligent Combined Structure Model[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 207-211
Authors:ZHU Jia-yuan  ZHANG Heng-xi  ZHANG Xi-bin
Affiliation:Department of Aircraft and Engine Engineering; Air Force Engineering University; Xi'an 710038; China
Abstract:An intelligent identification combined structure model is proposed using self-organizing map (SOM) and support vector machines (SVM). This model can improve the self-organizing map algorithm using Voronoi vector to reduce space occupation and improve convergence, and develop probability intelligent identification training samples set. Due to the complexity of the summary statistics, the authors select kurtosis, skewness, quantile and cumulative probability as parameters for data distributions identification training sets in experience. The combined structure model is divided into two layers. In the first SOM layer, different reliability distributions training sets are clustered into groups using SOM. In the second SVM layer, the clusters are learned and classified respectively in each group using novel multi-class support vector machines. Random data time series of 23 types of probability distributions are testing identified in the trained model. The results indicate that the identification rates are higher by the intelligent model compared to BP neural networks and probability networks models.
Keywords:neural networks  support vector machines  machine learning  reliability  probability distribution  pattern recognition  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号