首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Locating Current Sheets in the Solar Corona
Authors:J Büchner
Institution:(1) Max-Planck-Institut für Sonnensystemforschung, Max-Planck 2, 37191 Katlenburg-Lindau, Germany
Abstract:Current sheets are essential for energy dissipation in the solar corona, in particular by enabling magnetic reconnection. Unfortunately, sufficiently thin current sheets cannot be resolved observationally and the theory of their formation is an unresolved issue as well. We consider two predictors of coronal current concentrations, both based on geometrical or even topological properties of a force-free coronal magnetic field. First, there are separatrices related to magnetic nulls. Through separatrices the magnetic connectivity changes discontinuously. Coronal magnetic nulls are, however, very rare. Second, inspired by the concept of generalized magnetic reconnection without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the magnetic connectivity changes continuously, though strongly. The strength of the connectivity change can be quantified by measuring the squashing of the flux tubes which connect the magnetically conjugated photospheres. We verify the QSL and separatrix concepts by comparing the sites of magnetic nulls and enhanced squashing with the location of current concentrations in the corona. Due to the known difficulties of their direct observation, we simulated coronal current sheets by numerically calculating the response of the corona to energy input from the photosphere, heating a simultaneously observed Extreme Ultraviolet Bright Point. We did not find coronal current sheets at separatrices but at several QSL locations. The reason is that, although the geometrical properties of force-free extrapolated magnetic fields can indeed hint at possible current concentrations, a necessary condition for current sheet formation is the local energy input into the corona.
Keywords:corona heating  current sheets  energy release  magnetic reconnection  magnetic topology  numerical simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号