首页 | 本学科首页   官方微博 | 高级检索  
     

求解大型非对称线性方程组的拟最小残量IOM(q)算法
引用本文:王正盛. 求解大型非对称线性方程组的拟最小残量IOM(q)算法[J]. 南京航空航天大学学报, 2001, 33(2): 146-148
作者姓名:王正盛
作者单位:南京航空航天大学理学院
摘    要:不完全正交化算法(IOM(q))由于存储量和计算量小,常用来求解大非对称线性方程组。而此方法收敛过程常出现不规划振荡现象,从而影响了收敛速度。本文将拟残量最小的化性质加到IMO(q)算法中,提出拟最小残量不完全正交化算法(QMRIOM(q),这样收敛曲线光滑无振荡,从而大大加快其收敛速度,而且保留其存储量和计算量小的性质。

关 键 词:线性系统 迭代法 不完全正交化算法 (IOM(q)) Krylov子空间
文章编号:005-2615(2001)02-0146-03
修稿时间:2000-06-05

A Quasi-Minimal Residual IOM(q) Method for Solving Large Unsymmetric Linear Systems
Wang Zhengsheng. A Quasi-Minimal Residual IOM(q) Method for Solving Large Unsymmetric Linear Systems[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(2): 146-148
Authors:Wang Zhengsheng
Abstract:The incomplete orthogonalization methods(IOM(q)), for its less storage and computing cost, have been used for solving large unsymmetric linear systems. However, the IOM(q) exhibites irregular convergence behavior with wild oscillations in the residual norms though it tends to decrease in a very slow manner. This paper proposes a novel quasi minimal residual incomplete orthogonalization method (QMRIOM(q)). Numerical experiments show that it has smoothy convergence behavior and is more effective, especially when using its restarted version. The convergence can be much faster, and the less storage and computing cost property is retained.
Keywords:linear systems  iteration method  incomplete orthogonalization methods IOM(q)  Krylov subspace
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号