首页 | 本学科首页   官方微博 | 高级检索  
     

改进暗通道遥感影像去雾方法及效果分析
引用本文:江政远,胡勇,宋文韬,巩彩兰. 改进暗通道遥感影像去雾方法及效果分析[J]. 上海航天, 2018, 0(4): 78-84
作者姓名:江政远  胡勇  宋文韬  巩彩兰
作者单位:中国科学院大学;中国科学院上海技术物理研究所;中国科学院红外探测与成像技术重点实验室
基金项目:国家自然科学基金(41401490)
摘    要:遥感影像的预处理工作是遥感数据应用的基础。去除云雾是影像预处理工作的重要组成部分。针对遥感影像雾霾浓度分布不均匀的问题,提出一种改进的暗通道遥感影像去雾方法。以"高分一号"(GF-1)卫星为例,根据影像灰度图中的灰度值对影像雾霾浓度区域进行划分,对每个区域中暗原色值的获取方式进行改进,使用导向滤波优化大气传输率,以归一化植被指数(NDVI)为基础,设计用于评价影像去雾质量的定量指标。结果表明:所提出的方法能明显去除雾霾干扰,有效改善卫星影像数据的视觉效果,增强影像细节。该方法去雾处理后的遥感数据能应用于定量遥感,提高遥感影像的可用性及有效性。

关 键 词:雾霾影像   暗通道   归一化植被指数   导向滤波   “高分一号”卫星
收稿时间:2018-03-22
修稿时间:2018-06-27

Defogging Effect Evaluation of Remote Sensing Image Based on Improved Dark Channel
JIANG Zhengyuan,HU Yong,SONG Wentao and GONG Cailan. Defogging Effect Evaluation of Remote Sensing Image Based on Improved Dark Channel[J]. Aerospace Shanghai, 2018, 0(4): 78-84
Authors:JIANG Zhengyuan  HU Yong  SONG Wentao  GONG Cailan
Affiliation:University of Chinese Academy of Sciences, Beijing 100049, China;Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China,Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China,University of Chinese Academy of Sciences, Beijing 100049, China;Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China and Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China
Abstract:Remote sensing image preprocessing is the foundation of remote sensing data application. Removing the influence of cloud and fog on image data is an important part of image preprocessing. In this paper, an improved dark channel fog removal method is proposed based on the GF-1 satellite, in view of the uneven distribution of haze concentration in remote sensing images. Firstly, the image haze concentration region is divided according to the gray value of image, and the acquisition mode of dark original color in each region is improved. Then, the atmosphere transmission rate is optimized by guided filtering. Finally, based on the NDVI (normalized difference vegetation index), a set of image defogging quality evaluation indicators is designed and compared with the fog-free image data. The quantitative analysis on the results of fog removal is carried out. The results show that the method can obviously remove the fog interference, effectively improve the visual effect of the satellite image data and enhance image details, and the remote sensing data after processed by the improved dark channel fog removal algorithm can be applied to the quantitative remote sensing, improving the availability and effectiveness of the remote sensing data.
Keywords:remote sensing image with fog   dark channel   normalized difference vegetation index(NDVI)   guided filter   GF-1 satellite
本文献已被 CNKI 等数据库收录!
点击此处可从《上海航天》浏览原始摘要信息
点击此处可从《上海航天》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号