首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microwave specular scattering response of soil texture at X-band
Authors:Rishi Prakash  Dharmendra Singh  Nagendra P Pathak
Institution:aDepartment of Electronics & Computer Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
Abstract:Soil texture is an important soil parameter that is useful for meteorology, climatology, hydrology, ecology, etc. Therefore, it is important to classify soil based on soil texture (i.e., sand, silt and clay). A lot of studies with radar remote sensing have been carried out to estimate soil moisture and surface roughness, but less attention has been given to study the effect of individual soil texture on radar scattering, especially in specular direction. The main aim of this paper is to check the behavior of specular scattering with change in soil texture. This effect has also been analyzed in presence of soil moisture and surface roughness. Scattering coefficient has been retrieved for various soil texture fields with indigenously designed X-band bistatic scatterometer for a range of incidence angles (from 30° to 70° in steps of 10°) in both like polarizations, i.e., HH-polarization and VV-polarization. Observations were made at 10 GHz frequency. Four different fields were considered on the basis of soil texture variations; especially changes in sand percentage were made. Roughness (smooth soil to 1.4 cm rms surface height) and moisture (dry soil to 0.21 cm3 cm−3 volumetric soil moisture) conditions of these fields were varied for observations. Strong change in specular scattering coefficient is observed by changing the sand percentage in soil for HH-polarization, while in case of VV-polarization a lesser change is observed. Also a high change in specular scattering coefficient is noticed once moisture is added to the soil. It is difficult to observe the change in specular scattering coefficient with change in soil texture when surface is considered as rough. Therefore, it is important to minimize the roughness effect while observing the texture with specular scattering. For this purpose, polarization study was carried out to see how polarization can be helpful to minimize the roughness effect. The effect of soil texture on copolarization ratio is critically analyzed, and it is observed that for higher incidence angle (greater-or-equal, slanted50°), the distinction in soil texture fields are clearly observable on the basis of copolarization ratio. This type of study will be helpful in near future to design the bistatic radar system for soil parameter monitoring, especially for cartwheel satellite system.
Keywords:Microwave specular scattering  Soil texture  Scattering models
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号