首页 | 本学科首页   官方微博 | 高级检索  
     

基于代价敏感剪枝卷积神经网络的弹道目标识别
作者姓名:向前  王晓丹  宋亚飞  李睿  来杰  张国令
作者单位:空军工程大学 防空反导学院, 西安 710051
基金项目:国家自然科学基金61876189国家自然科学基金61503407国家自然科学基金61703426国家自然科学基金61806219国家自然科学基金61273275陕西省高校科协青年人才托举计划20190108陕西省创新人才推进计划2020KJXX-065
摘    要:为降低弹道目标整体误识别代价,提出了基于代价敏感剪枝(CSP)一维卷积神经网络(1D-CNN)的弹道目标高分辨距离像识别方法。首先,基于彩票假设提出了同时以降低模型复杂度和误识别代价为目标的统一框架;然后,在此基础上,提出了基于人工蜂群算法的网络结构无梯度优化方法,以网络结构搜索的方式自动地寻找1D-CNN的代价敏感子网络,即代价敏感剪枝;最后,为了使代价敏感子网络在微调过程中仍以最小化误识别代价为目标,提出了一种代价敏感交叉熵(CSCE)损失函数对训练进行优化,使代价敏感子网络侧重对误识别代价较高的类别正确分类来进一步降低整体误识别代价。实验结果表明:结合CSP和CSCE损失函数的1D-CNN能在保持较高的识别正确率的前提下,相比传统的1D-CNN具有更低的整体误识别代价,且降低了50%以上的计算复杂度。 

关 键 词:弹道导弹   卷积神经网络(CNN)   代价敏感   通道剪枝   人工蜂群算法   高分辨距离像
收稿时间:2020-08-19
本文献已被 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号