首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进鸽群算法的高超声速飞行器轨迹优化
引用本文:张亚平,孙佩华,李昱辉,刘燕斌. 基于改进鸽群算法的高超声速飞行器轨迹优化[J]. 飞行力学, 2017, 35(4)
作者姓名:张亚平  孙佩华  李昱辉  刘燕斌
作者单位:南京航空航天大学 航天学院,江苏 南京,210016
基金项目:江苏省2015年普通高校研究生实践创新计划项目
摘    要:采用基于罚函数思想的约束处理技术改进鸽群智能算法,应用于复杂的带约束的飞行器轨迹优化问题。以高超声速飞行器爬升段轨迹优化为例,建立其包含微分方程约束、路径约束和终端约束的优化数学模型,通过罚函数构造算法的适应值函数并对优化变量添加边界强约束,将改进的鸽群智能(PIO)算法和粒子群(PSO)算法对高超声速飞行器爬升段优化数学模型进行对比仿真分析。仿真结果表明,改进的鸽群智能算法在解决此类复杂带约束优化问题中展现出了更好的优化效率,具有良好的工程应用价值。

关 键 词:高超声速飞行器  轨迹优化  鸽群智能算法  罚函数

Hypersonic vehicle trajectory optimization based on improved pigeon-inspired optimization algorithm
ZHANG Ya-ping,SUN Pei-hua,LI Yu-hui,LIU Yan-bin. Hypersonic vehicle trajectory optimization based on improved pigeon-inspired optimization algorithm[J]. Flight Dynamics, 2017, 35(4)
Authors:ZHANG Ya-ping  SUN Pei-hua  LI Yu-hui  LIU Yan-bin
Abstract:Based on the constraint processing technology of penalty function, pigeon-inspired optimization(PIO) is improved to deal with the complexly constrained optimization problems such as hypersonic vehicle trajectory optimization.For the climbing trajectory optimization for hypersonic vehicle, optimization model containing differential constraints, trajectory constraints and terminal constraints is established.With modified fitness function by the penalty function concept and enforced constraints of optimal variables, a comparative simulation of PIO and PSO is performed on the above-mentioned optimization problem.Simulation results show that more optimal efficiency and engineering value of PIO is shown to solve the complexly constrained optimization problems.
Keywords:hypersonic vehicle  trajectory optimization  PIO algoritbm  penalty function
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号