首页 | 本学科首页   官方微博 | 高级检索  
     检索      


AGN activity triggered by circumnuclear starbursts
Institution:1. Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, Pessac, 33615, France;2. Instituto de Ciencias de Materiales de Madrid (CSIC), Madrid, 28049, Spain;3. LERMA, Obs. de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, ENS, F-75005, France;4. Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands;5. Leiden Observatory, Leiden University, P.O. Box 9513, Leiden, NL 2300 RA, Netherlands;6. LERMA, Université de Cergy Pontoise, Sorbonne Universités, UPMC Univ. Paris 6, PSL Research University, Observatoire de Paris, UMR 8112 CNRS, 5 mail Gay Lussac 95000 Cergy Pontoise, France;7. CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Aix Marseille Univ, Marseille, France;8. Sorbonne Universités, UPMC Univ. Paris 6 & CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, Paris, 75014, France;9. Institut d’Astrophysique Spatiale, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay - IAS, bâtiment 121, univ Paris-Sud, Orsay, 91405, France;10. Dept. Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, 8000, Denmark;11. Institut des Sciences Moléculaires d’Orsay, ISMO, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay, F-91405, France;12. Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE 412 96, Sweden;13. Dipartimento di Fisica e Astronomia, Universitá di Catania, Via S. Sofia 64, Catania, 95123 Sicily, Italy;14. Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ, UK;15. Laboratoire AIM, Paris-Saclay, CEA/IRFU/DAp - CNRS, Université Paris Diderot, Gif-sur-Yvette Cedex, 91191, France;p. 201 Physics Bldg., Syracuse University, Syracuse, NY, 13244, USA;q. Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, 060-0819, Japan
Abstract:We present a radiative/hydrodynamical mechanism for triggering AGN activity; the intensive radiation from a circumnuclear starburst drives the nuclear fueling due to the Poynting-Robertson (radiation drag) effects. When the starburst is in an early and therefore super-Eddington phase, the radiative flux force is likely to obstruct severely the mass accretion onto the nucleus (radiative blizzard phase). But, in a later sub-Eddington phase, the radiation flux force builds up a wall of dusty gas. The wall absorbs the radiation from the starburst regions and re-emits infrared radiation, which causes the disk accretion due to the Poynting-Robertson effect, consequently leading to nuclear fueling (radiative avalanche phase). The radiative avalanche could link to an advection-dominated accretion flow (ADAF) onto a putative supermassive black hole. The radiatively triggered nuclear activity diminishes as the starburst dims. In this context, the AGN type could be discriminated not only by the viewing angles but also by the evolution of a circumnuclear starbursts. Based on such a picture, we reconsider the AGN activity in luminous IRAS galaxies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号