首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉引导的工业机器人示教编程系统
引用本文:倪自强,王田苗,刘达. 基于视觉引导的工业机器人示教编程系统[J]. 北京航空航天大学学报, 2016, 42(3): 562-568. DOI: 10.13700/j.bh.1001-5965.2015.0218
作者姓名:倪自强  王田苗  刘达
作者单位:北京航空航天大学机械工程与自动化学院, 北京 100083
基金项目:国家“863”计划(2013AA041201),国家自然科学基金(61175104)National High-tech Research and Development Program of China(2013AA041201),National Natural Science Foundation of China(61175104)
摘    要:针对目前工业机器人所采用的编程方式的局限性,提出了基于视觉引导的工业机器人示教编程方式。首先采用奇异值分解(SVD)法建立双目视觉系统与机器人的坐标映射关系,通过双目视觉系统识别和提取特定的示教工具末端位姿,以得到规划机器人运动所需的位姿数据。然后解析机器人控制器可执行文件的格式,将位姿数据转化为机器人可以执行的文件。最后通过试验验证了视觉引导示教方式的可行性,并对示教跟踪精度进行了分析,结果表明,跟踪误差最大为-1.18 mm,均方根误差为0.47 mm。 

关 键 词:工业机器人   示教编程   视觉   焊接   奇异值分解(SVD)
收稿时间:2015-04-13

Vision guide based teaching programming for industrial robot
NI Ziqiang,WANG Tianmiao,LIU Da. Vision guide based teaching programming for industrial robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 562-568. DOI: 10.13700/j.bh.1001-5965.2015.0218
Authors:NI Ziqiang  WANG Tianmiao  LIU Da
Affiliation:School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:Most industrial robots used in manufacture are based on teaching programming and offline programming. The shortcomings of these two programming methods limit the further application of industrial robots. A vision guide based programming method was introduced to solve the problem. The singular value decomposition (SVD) algorithm was used to calculate the registration matrix between computer vision space and robot space. The positions and orientations of robot's end-actuator were obtained by measuring the teaching tool, which is the key process to realize vision guide programming. Analytical the format of executable file which running on robot controller, and then transform the positions and orientations' data into executable file. An experiment was introduced to verify the feasibility and reliability of the programming method. The results indicate that the maximum error of trajectory tracking is -1.18 mm, and the root mean square error is 0.47 mm.
Keywords:industrial robot  teaching programming  vision  weld  singular value decomposition (SVD)
本文献已被 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号