首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳秒脉冲滑动弧放电等离子体裂解煤油实验研究
引用本文:张凯,金迪,宋飞龙,黄胜方,胥世达.纳秒脉冲滑动弧放电等离子体裂解煤油实验研究[J].推进技术,2022,43(7):414-422.
作者姓名:张凯  金迪  宋飞龙  黄胜方  胥世达
作者单位:空军工程大学 等离子体动力学实验室 陕西 西安710038,空军工程大学 等离子体动力学实验室 陕西 西安710038,空军工程大学 等离子体动力学实验室 陕西 西安710038,空军工程大学 等离子体动力学实验室 陕西 西安710038,空军工程大学 等离子体动力学实验室 陕西 西安710038
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:为改善极端条件下航空煤油的点火和燃烧性能,提高煤油活性,本文在大气压氮气环境下利用纳秒脉冲电源产生的滑动弧等离子体进行煤油裂解实验研究,得到了包含活性更高的气态轻质烃和氢气等小分子物质的裂解气。通过改变电源输出脉冲电压的上升沿时间和下降沿时间,得到了裂解气产量、碳氢比以及裂解气中各组分选择性的变化规律,并总结了相关的部分反应路径。实验结果如下:裂解气产量随着上升沿时间的增加而减小,随着下降沿时间的增加而上升,裂解气碳氢比则呈现相反的变化规律;裂解气主要组分中,乙烷选择性最高,在各实验工况下均超过30%;随着上升沿时间和下降沿时间的增加,裂解气中丙烷和丙烯的选择性均降低,氢气的选择性上升;上升沿时间和下降沿时间的变化对裂解效果产生影响的主要原因是改变了反应的路径。实验结果表明,纳秒脉冲滑动弧放电等离子体可以将煤油中的部分大分子烃类转化为气态轻烃和氢气等高活性组分。同时,增加纳秒脉冲电压下降沿时间能够改善滑动弧等离子体的裂解效果,获得更多活性更高的小分子物质。

关 键 词:航空煤油  纳秒脉冲滑动弧放电  等离子裂解  碳氢比  选择性  反应路径
收稿时间:2020/12/15 0:00:00
修稿时间:2022/6/7 0:00:00

Experimental Research on Nanosecond Pulsed Gliding Arc Discharge Plasma Cracking Kerosene
ZHANG Kai,JIN Di,SONG Fei-long,HUANG Sheng-fang,XV Shi-da.Experimental Research on Nanosecond Pulsed Gliding Arc Discharge Plasma Cracking Kerosene[J].Journal of Propulsion Technology,2022,43(7):414-422.
Authors:ZHANG Kai  JIN Di  SONG Fei-long  HUANG Sheng-fang  XV Shi-da
Abstract:To improve the ignition and combustion performance of aviation kerosene in extreme conditions, the gliding arc plasma generated by the nanosecond pulsed power supply was adopted to crack the kerosene in atmospheric-pressure nitrogen environment. Cracking gas containing more active components such as gaseous light hydrocarbons and hydrogen were acquired. Besides, the change laws of cracking gas flow rate, C/H ratio and the selectivity of main components in cracking gas were obtained by changing the rise time and fall time of the pulse voltage, and some relevant reaction paths are summarized. The experimental results were as follows. The cracking gas flow rate reduced as the rise time gone up, and increased with longer fall time. The variation laws of C/H ratio with the two parameters were opposite to that of cracking gas flow rate. Among the main components of the cracking gas, the selectivity of C2H6 was the highest, the value exceeded 30% under the experimental conditions. With the increase of the rise time and fall time, the selectivity of propane and propylene in cracking gas decreased while that of H2 rose. The changes of rise time and fall time influenced cracking effects through changing the reaction paths. The experimental results show that nanosecond pulse gliding arc discharge plasma could convert part of the macromolecular hydrocarbons in kerosene into active components gaseous light hydrocarbon and hydrogen. Meanwhile, longer fall time could improve the cracking effect of plasma, and obtain more active components.
Keywords:Aviation kerosene  Nanosecond pulse power supply  Gliding arc plasma cracking  C/H ratio  Selectivity  Reaction path
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号