首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换的非平稳信号趋势项剔除方法
引用本文:朱学锋 韩宁. 基于小波变换的非平稳信号趋势项剔除方法[J]. 飞行器测控学报, 2006, 25(5): 81-85
作者姓名:朱学锋 韩宁
作者单位:92941部队 辽宁葫芦岛125001
摘    要:分析了空间飞行器遥测信号处理传统趋势项剔除方法的优势和不足,提出了基于小波变换的非平稳信号趋势项剔除方法。这种方法通过滤波器组将信号分解与重构,实现趋向性信号与零均值平稳随机信号的分离。仿真实验表明,该方法简单、高效,适用于非平稳随机信号的处理,是一种实用的趋势项剔除方法。

关 键 词:趋势项  小波变换  非平稳随机信号  自回归综合滑动平均(ARIMA)模型
收稿时间:2006-04-20
修稿时间:2006-05-22

Removal of Trend from Non-Stationary Signal Based on Wavelet Transformation
ZHU Xue-feng,HAN Ning. Removal of Trend from Non-Stationary Signal Based on Wavelet Transformation[J]. Journal of Spacecraft TT&C Technology, 2006, 25(5): 81-85
Authors:ZHU Xue-feng  HAN Ning
Affiliation:PLA Unit 92941, Huludao, Liaoning Province 125001
Abstract:This paper analyzes the superiorities and shortcomings of traditional trend-removal methods and puts forward a method based on wavelet transformation to remove the trend of non-stationary signals.Based on decomposition and reconstruction of the signals by filter sets,the trend-signal is separated from stationary stochastic signals.Experiment results show that the method can be applied easily and efficiently to deal with non-stationary stochastic signals and remove trend signal.
Keywords:Trend  Wavelet Transformation  Non-Stationary Signal  ARIMA model
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号