首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的深度学习流场特征识别及应用进展
引用本文:叶舒然,张珍,王一伟,黄晨光. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736-524736. DOI: 10.7527/S1000-6893.2020.24736
作者姓名:叶舒然  张珍  王一伟  黄晨光
作者单位:中国科学院力学研究所流固耦合系统力学重点实验室,北京 100190;中国科学院大学工程科学学院,北京 100049
基金项目:国家重点研发计划(2016YFC0300800)
摘    要:深度学习架构的出色性能使得机器学习在流体力学中的应用得到新的发展,可以应对流体力学中诸多问题和需求。卷积神经网络(CNN)强大的非线性映射能力以及分层提取信息特征的功能,使其成为当下流场特征研究不容忽视的工具。围绕这一研究前沿与热点问题,概述和归纳了这一研究领域的进展与成果。首先,对深度学习在流体力学中的发展以及卷积神经网络进行了简单的回顾。然后,从卷积神经网络能够识别特征出发,先后介绍了基于卷积的深度学习特征识别在流场预测、流动外形优化、流场可视化精度提升和生成对抗等应用方面的研究进展。最后,对深度学习在流场识别领域的应用进行了展望,为后续的研究提供参考。

关 键 词:卷积神经网络  流场识别  流动预测  外形优化  泊松方程  生成对抗网络  深度学习
收稿时间:2020-09-10
修稿时间:2020-10-15

Progress in deep convolutional neural network based flow field recognition and its applications
YE Shuran,ZHANG Zhen,WANG Yiwei,HUANG Chenguang. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736-524736. DOI: 10.7527/S1000-6893.2020.24736
Authors:YE Shuran  ZHANG Zhen  WANG Yiwei  HUANG Chenguang
Affiliation:1. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:With excellent performance, the deep learning architecture has enabled new developments in application of machine learning in fluid mechanics, and can cope with many challenges and needs in fluid mechanics. Due to powerful nonlinear mapping capabilities and hierarchical extraction of information features, the Convolutional Neural Network (CNN) has become a tool that cannot be ignored in current research on flow features. This paper summarizes the progress and achievements in this research area. First, the developments of deep learning for fluid mechanics and CNNs are briefly reviewed. Then, the research progress of using deep CNN in flow prediction, flow shape optimization, improving the accuracy of flow field visualization, and generation confrontation is introduced. Finally, prospects of application of deep learning in flow field recognition are discussed to provide a reference for subsequent research.
Keywords:convolutional neural network  flow field recognition  flow prediction  shape optimization  Poisson equation  generative adversarial network  deep learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号