首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Further analyses of the slide lander and of drop delivery systems for improved lunar surface access
Authors:KA Ehricke
Institution:Space Global Co., 845 Lamplight Drive, La Jolla, CA 92037, U.S.A.
Abstract:The paper discusses two methods for lunar surface access. One method is characterized by very little propellant consumption for landing (lunar slide lander, LSL); the other (drop delivery method, DDM) avoids release of propellant gases at the lunar surface. The LSL is of particular promise and importance. Its analysis and development introduces a new field of cosmic dynamics—harenodynamics, the science and technology of interaction of surfaces with dust and sand at near-orbital speeds down to low velocities. Although the data base is small so far and needs to be enlarged, analyses of the LSL so far indicate promise as to feasibility. Its realization will revolutionize present conventional concepts of lunar development. The DDM offers cost-effective alternatives to conventional lunar landing by retrothrust, but on a more selective basis, because propellant-savings are secondary to avoiding gas releases into the lunar high-vacuum environment. It was found that stationary energy absorption systems (EAS) are required, because vehicle-attached absorption systems are entirely inadequate. This requires large structures which can be built on the lunar surface only after a somewhat higher degree of industrial capability has been established. However, they can be built entirely of lunar materials. Altogether, the LSL is the more significant of the two both in terms of economy and of operational scope.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号