首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbit determination and control for the European Student Moon Orbiter
Institution:1. Glasgow University, Space Advanced Research Team, Glasgow, United Kingdom;2. University of Strathclyde, Space Advanced Research Team, Glasgow, United Kingdom;1. Dirección Nacional de Control de Enfermedades Inmunoprevenibles (DiNaCEI), Ministerio de Salud de la Nación, Argentina;2. Fundacion INFANT, Buenos Aires, Argentina;3. Vanderbilt University, Nashville, TN, United States;4. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina;1. Faculty of Material Science and Engineering, Warsaw University of Technology, ul. Wo?oska 141, Warsaw 02-507, Poland;2. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;1. Institute of Physics, Academia Sinica, Taipei 11529, Taiwan;2. Academia Sinica Grid Computing Centre, Taipei 11529, Taiwan;3. Institute of Hydrological & Oceanic Sciences, National Central University, Jhongli 32001, Taiwan;4. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA;1. Astronomical Institute of the University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland;2. Bundesamt für Landestopografie swisstopo, Seftigenstrasse 264, 3084 Wabern, Switzerland
Abstract:This paper presents the preliminary navigation and orbit determination analyses for the European Student Moon Orbiter. The severe constraint on the total mission Δv and the all-day piggy-back launch requirement imposed by the limited available budget, led to the choice of using a low-energy transfer, more specifically a Weak Stability Boundary one, with a capture into an elliptic orbit around the Moon. A particular navigation strategy was devised to ensure capture and fulfil the requirement for the uncontrolled orbit stability at the Moon. This paper presents a simulation of the orbit determination process, based on an extended Kalman filter, and the navigation strategy applied to the baseline transfer of the 2011–2012 window. The navigation strategy optimally allocates multiple Trajectory Correction Manoeuvres to target a so-called capture corridor. The capture corridor is defined, at each point along the transfer, by back-propagating the set of perturbed states at the Moon that provides an acceptable lifetime of the lunar orbit.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号