首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A feedback linearization control for the nonlinear 5-DOF flywheel suspended by the permanent magnet biased hybrid magnetic bearings
Institution:1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India;2. Aero Engine Research and Design Centre, Hindustan Aeronautics Limited, Bangalore, 560093, India;1. College of Engineering and Science, Victoria University, Melbourne, Victoria 8001, Australia;2. School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
Abstract:The dynamic model of the magnetic suspension flywheel (MSFW) whose rotor is suspended by the permanent magnet (PM) biased hybrid magnetic bearing is nonlinear, complicated and coupled because of the superposition and couple of the electromagnetic flux and PM flux. It is a challenge for the closed-loop controller design of the MSFW. In this paper, the MIMO nonlinear dynamic model of such MSFW has been obtained using the equivalent magnetic flux circuit calculation and integrating the rotor dynamics. A nonlinear Luenberger observer has been designed to estimate the state variables of the system, and then the dynamic model has been exact linearized to linear and decoupled one using the state feedback. At last, a linear controller has been designed based on the obtained exact linearization model. The better abilities of decoupling and disturbance depression of the proposed controller compared to the controllers designed based on the Taylor linearization model are verified by simulations and experiments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号