首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的电磁干扰的预测
引用本文:杨天鹏,马齐爽,谢清明. 基于神经网络的电磁干扰的预测[J]. 北京航空航天大学学报, 2013, 39(5): 697-700,705
作者姓名:杨天鹏  马齐爽  谢清明
作者单位:北京航空航天大学自动化科学与电气工程学院,北京,100191;中国航天科工集团公司飞航动力装置研究所,北京,100074
摘    要:提出了一种应用神经网络预测电磁干扰的方法.针对遗传算法总体搜索能力较强但容易陷入局部最优,而模拟退火算法具有较强的局部搜索能力,又能避免搜索陷入局部最优解的特点,将模拟退火算法与遗传算法相结合,优化多层前馈(BP, Back Propagation)神经网络,获取最优的权值和阈值,并采用模拟退火的思想确定隐含层神经元的个数,进而建立基于神经网络的电磁干扰预测模型.以双平行导线间的电磁干扰问题为实例,明确干扰要素,建立训练样本和测试样本,对比期望输出和预测输出之间的误差,结果表明该方法可以准确有效地进行电磁干扰预测.

关 键 词:神经网络  模拟退火算法  遗传算法  电磁干扰
收稿时间:2012-12-10

Prediction of electromagnetic interference based on neural network
Yang Tianpeng Ma Qishuang School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing,China Xie Qingming. Prediction of electromagnetic interference based on neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 697-700,705
Authors:Yang Tianpeng Ma Qishuang School of Automation Science  Electrical Engineering  Beijing University of Aeronautics  Astronautics  Beijing  China Xie Qingming
Affiliation:1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;2. China Aerospace Science and Industry Group, Aviation Aerospace Power Device Research Institute, Beijing 100074, China
Abstract:A method to predict the electromagnetic interference using neural network was proposed. Genetic algorithm has the strong overall search ability but easy to fall into local optimum, and simulated annealing algorithm has the partial search ability, avoiding the search into local optimal solution. By using the simulated annealing algorithm and genetic algorithm combining, the back propagation (BP) neural network weights and thresholds were optimized, and the number of hidden layer neurons was determined by the simulated annealing ideas. Then, the neural network-based predictive models of electromagnetic interference was established. With the two parallel leads to electromagnetic interference matter as predicted instance, interference factors were identified, and the training and test samples were established. In contrast to the error between the expected output and the predicted output, the results show that the method can accurately predict the electromagnetic interference effectively.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号