首页 | 本学科首页   官方微博 | 高级检索  
     检索      

锂离子电池单离子导体聚合物电解质研究进展
引用本文:沈秀,张鹏,李航,李睿洋,王欣,华海明,黄伯阳,杨锦,赵金保.锂离子电池单离子导体聚合物电解质研究进展[J].上海航天,2020,37(2):13-22.
作者姓名:沈秀  张鹏  李航  李睿洋  王欣  华海明  黄伯阳  杨锦  赵金保
作者单位:厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005,厦门大学 能源学院,福建 厦门361005,厦门大学 能源学院,福建 厦门361005,厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005,厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005,厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005,厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005,厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005,厦门大学 固体表面物理化学国家重点实验室 能源化学协同创新中心 新能源汽车动力电源技术国家地方联合工程实验室 化学化工学院,福建 厦门361005;厦门大学 能源学院,福建 厦门361005
基金项目:国家自收稿日期:2020?01?14; 修回日期:2020?03?15
摘    要:锂离子电池在3C电子产品和动力汽车电池行业广泛应用,在航天电源领域也展现出一定的前景。单离子导体是基本仅由参与电化学反应的锂离子迁移的电解质体系,解决传统锂离子电池液态电解质存在的副反应和阴离子的浓差极化等问题,改善电池的库伦效率和循环寿命。研究者们发展了多种类型的单离子导体电解质。本文总结了近5年来不同阴离子类型的单离子导体聚合物电解质合成策略以及分子动力学模拟计算的最新进展。

关 键 词:单离子导体  锂离子电池  聚合物电解质  离子电导率  锂离子迁移数
收稿时间:2020/1/14 0:00:00
修稿时间:2020/3/15 0:00:00

Research Progress on Single Ion Conductor Polymer Electrolyte for Lithium-ion Batteries
SHEN Xiu,ZHANG Peng,LI Hang,LI Ruiyang,WANG Xin,HUA Haiming,HUANG Boyang,YANG Jin and ZHAO Jinbao.Research Progress on Single Ion Conductor Polymer Electrolyte for Lithium-ion Batteries[J].Aerospace Shanghai,2020,37(2):13-22.
Authors:SHEN Xiu  ZHANG Peng  LI Hang  LI Ruiyang  WANG Xin  HUA Haiming  HUANG Boyang  YANG Jin and ZHAO Jinbao
Institution:State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China,College of Energy, Xiamen University, Xiamen 361005, Fujian, China,College of Energy, Xiamen University, Xiamen 361005, Fujian, China,State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China,State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China,State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China,State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China,State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China and State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State?Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China;College of Energy, Xiamen University, Xiamen 361005, Fujian, China
Abstract:Lithium-ion batteries have been widely used in 3C electronic products and power car batteries, and have shown certain prospects in the field of aerospace power supply. Single ion conductor is an electrolyte system basically transported by the lithium ions participating in electrochemical reactions. It solves the problems such as side reactions and concentration polarization of anions existing in the liquid electrolytes of traditional lithium-ion batteries, and thus improves the coulombic efficiency and cycle life of the batteries. Researchers have developed several types of single ion conductor electrolytes. In this paper, the latest advances in the synthesis strategies and molecular dynamics simulation of polymer electrolytes for single ion conductors with different anion types in the past five years are summarized.
Keywords:single ion conductor  lithium-ion battery  polymer electrolyte  ionic conductivity  lithium-ion transference number
本文献已被 CNKI 等数据库收录!
点击此处可从《上海航天》浏览原始摘要信息
点击此处可从《上海航天》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号