首页 | 本学科首页   官方微博 | 高级检索  
     检索      

含内热源的多孔方腔自然对流非正交MRT-LBM模拟
引用本文:张莹,包进,过海龙,连小龙,黄逸宸,李培生.含内热源的多孔方腔自然对流非正交MRT-LBM模拟[J].北京航空航天大学学报,2020,46(2):241-251.
作者姓名:张莹  包进  过海龙  连小龙  黄逸宸  李培生
作者单位:南昌大学 机电工程学院, 南昌 330031
基金项目:国家自然科学基金51566012国家自然科学基金11562011江西省自然科学基金20181BAB206031
摘    要:为了增强多孔方腔内流体流动与传热效果,采用非正交多松弛格子Boltzmann方法(MRT-LBM)对含有内热源的多孔方腔自然对流传热现象进行了数值模拟。研究了不同冷源布置方案(Scheme A~Scheme F)、内热源结构形式(Case 1、Case 2、Case 3)、内热源位置(ab)、Darcy数、Rayleigh数等对多孔方腔内流体流动与传热的影响。计算结果表明:冷源布置方案对腔内流体流动与传热具有重要影响,当冷源左右对称布置时,腔内温度场及流场亦对称分布;在高Rayleigh数下采用Scheme A的双上部冷源布置方案能明显提高腔内的传热强度;内热源的形状对腔内对流传热影响很大,高Rayleigh数下,Case 3的布置方式更好。内热源的位置ab对腔内的传热影响明显,提出了热壁面平均Nusselt数与位置a的拟合关系式,存在最佳的位置aa=0.25),使得腔内的对流传热最强;热壁面平均Nusselt数亦随b值变化表现出特定的变化规律。随着b值的增加,热壁面平均Nusselt数呈现先增后减再增的趋势。 

关 键 词:多松弛(MRT)格子    Boltzmann模型    内热源    自然对流    多孔方腔
收稿时间:2019-05-10

Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source
Institution:School of Mechanical&Electrical Engineering, Nanchang University, Nanchang 330031, China
Abstract:In order to enhance the effect of fluid flow and heat transfer in the porous square cavity, the non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is used to simulate the natural convective heat transfer in the porous square cavity with internal heat source. The effects of different cold source arrangements (Scheme A-Scheme F), internal heat source structure (Case 1, Case 2, Case 3), internal heat source location (a, b), Darcy number, and Rayleigh number on fluid flow and heat transfer in square cavity are studied. The calculation results show that the arrangement of the cold source has an important influence on the fluid flow and heat transfer. When the cold source is symmetrically distributed, the temperature field and the flow field in the cavity are also symmetrically distributed; under high Rayleigh number, the double upper cold source arrangement of Scheme A can significantly improve the heat transfer intensity in the cavity; the shape of the internal heat source has a great influence on the convective heat transfer in the cavity. Under the high Rayleigh number, case 3 is arranged better. The positions a and b of the internal heat source have obvious influence on the heat transfer in the cavity. The fitting relationship between the average Nusselt number of the hot wall surface and the position a is proposed, and there is an optimal position a (a=0.25), which makes the convective heat transfer in the cavity strongest; the average Nusselt number of the hot wall surface also shows a specific variation law with the change of b value. With the value of b increases, the average Nusselt number of the hot wall surface increases first, then decreases and finally increases. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号