首页 | 本学科首页   官方微博 | 高级检索  
     检索      

面向InSAR的空气扰动影响机翼挠曲变形建模
引用本文:朱庄生,张萌.面向InSAR的空气扰动影响机翼挠曲变形建模[J].北京航空航天大学学报,2020,46(1):38-50.
作者姓名:朱庄生  张萌
作者单位:1.北京航空航天大学 仪器科学与光电工程学院, 北京 100083
基金项目:国家自然科学基金61873019国家自然科学基金61573040国家自然科学基金61421063国家自然科学基金61661136007国家自然科学基金61703021国家自然科学基金61722103国家自然科学基金61571030国家自然科学基金61473020航空科学基金20170551004
摘    要:针对多节点InSAR机翼挠曲变形误差问题,提出了一种基于机理模型综合参数辨识的方法对空气扰动影响机翼挠曲变形分层建模。首先,将大气湍流作为InSAR成像工作段的主要空气扰动,并基于Dryden模型分析得出了载机工作高度和速度是影响大气湍流的主要因素,将大气湍流影响机翼挠曲变形建模转换为载机在不同工作状态(高度变化、速度变化)的机翼挠曲变形分层建模。其次,基于空气动力学理论及悬臂梁变形理论建立机翼挠曲变形机理模型,借助计算流体力学与计算结构力学仿真分析获取实验数据辨识模型参数。最后,通过仿真实验验证,所提方法与模态叠加原理计算横向位移精度均优于0.6 mm(相对误差0.3%),轴向位移精度均优于0.015 mm(相对误差0.2%)。对实验室搭建的分布式光纤光栅测量系统进行测试,利用模态叠加原理计算变形量来验证所提方法,横向位移精度优于0.3 mm(相对误差1%),轴向位移精度优于0.06 mm(相对误差3%)。 

关 键 词:InSAR    机翼挠曲变形    大气湍流    参数辨识    回归分析    模态叠加原理
收稿时间:2019-04-22

Air disturbance affecting wing deflection deformation modeling for InSAR
Institution:1.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China2.Science & Technology on Inertial Laboratory, Beijing 100083, China3.Key Laboratory of Fundamental Science for National Defense-Novel Inertial Instrument & Navigation System Technology, Beijing 100083, China
Abstract:For the problem of multi-node InSAR wing deflection deformation error, a method based on mechanism modeling integrated parameter identification is proposed for the layered modeling of wing deflection deformation induced by air disturbance. First, this model takes atmospheric turbulence as the main air disturbance in the InSAR imaging working section, and based on Dryden model, it is analyzed that the working height and speed of the aircraft are the main factors affecting atmospheric turbulence. Therefore, the modeling of wing deformation affected by atmospheric turbulence is transformed to the layered modeling of wing deformation under different working conditions (height change, velocity change). Second, the wing deformation mechanism model is established based on the combination of the aerodynamic theory and the cantilever beam deformation theory. The parameters of the model are identified by the experimental data obtained from the simulation analysis of computational fluid dynamics and computational structural mechanics. Finally, the simulation experiments show that, calculated by both the proposed method and the mature modal superposition principle, the lateral displacement error is better than 0.6 mm (relative error 0.3%) and the axial displacement error is better than 0.015 mm (relative error 0.2%). In addition, based on the distributed fiber Bragg grating measurement system of wing structure built in the laboratory and the principle of modal superposition, the deformation is calculated to verify the proposed method, the lateral displacement error is better than 0.3 mm (relative error 1%) and the axial relative error is better than 0.06 mm (relative error 3%). 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号