摘 要: | 针对深空探测时间长、成本高的特点,文中以多任务深空探测为背景,建立了包含多模型、多约束、多变量、多阶段的探测轨道设计模型。通过融合推力工作模式、分段设计目标函数等策略,克服了模型的内点约束限制,降低了优化模型的复杂度。为了提高优化速度、提升优化精度,结合梯度搜索和粒子群算法的特点,研究提出了一种梯度混合粒子群(GHPSO)算法。将该算法应用到多任务星探测轨道设计模型上,得到了发动机的工作时序,并横向对比了该文算法与传统粒子群算法(PSO)和遗传算法(GA)的优化性能。仿真结果表明,文中提出的算法搜索速度快,第1设计阶段GHPSO相对GA提高61.96%,相对PSO提高47.85%,第2设计阶段GHPSO相对GA提高61.87%,相对PSO提高43.66%;精度最高,第1设计阶段GHPSO相对GA平均精度提高了2.86%,最高精度提高了1.24%,相对PSO平均精度提高了4.19%,最高精度提高了3.97%,第2设计阶段GHPSO相对GA平均精度提高了3.33%,最高精度提高了1.63%,相对PSO平均精度提高了4.72%,最高精度提高了3.02%,适用于轨道优化设计类的非线性、多约束全局优化问题。
|