首页 | 本学科首页   官方微博 | 高级检索  
     

改进 PSO-RBFNN算法在退化型产品寿命预测中的应用
引用本文:付霖宇,王浩伟. 改进 PSO-RBFNN算法在退化型产品寿命预测中的应用[J]. 海军航空工程学院学报, 2013, 28(4): 412-416
作者姓名:付霖宇  王浩伟
作者单位:[1]海军航空工程学院兵器科学与技术系,山东烟台264001 [2]91880部队,山东胶州266300
基金项目:国家部委基础科研基金资助项目(40108)
摘    要:针对部分高可靠性产品退化规律无法掌握的难题,提出了使用改进粒子群优化—基于神经网络函数(PSO-RBFNN)算法拟合样品退化轨迹、预测伪寿命值的方法。首先,通过改进PSO算法对RBFNN进行训练优化;然后,使用部分测量数据对训练后的RBFNN进行准确度测试;最后,通过RBFNN预测样品退化轨迹,估计出伪寿命值。使用某型电连接器的加速退化试验数据对提出的方法进行了试验验证,成功对该型电连接器进行了寿命预测,得出平均寿命为200 412 h。

关 键 词:寿命预测  退化轨迹  粒子群优化—基于神经网络函数  伪寿命
收稿时间:2012-08-24
修稿时间:2012-11-14

Application of APSO-RBFNN Algorithm on Degradation Production Lifetime Predition
FU Lin-yu and WANG Hao-wei. Application of APSO-RBFNN Algorithm on Degradation Production Lifetime Predition[J]. Journal of Naval Aeronautical Engineering Institute, 2013, 28(4): 412-416
Authors:FU Lin-yu and WANG Hao-wei
Affiliation:1. Department of Ordnance Science and Technology, NAAU, Yantai Shandong 264001, China; 2. The 91880th Unit of PLA, Jiaozhou Shandong 266300, China)
Abstract:According to the problem that the degradation rule of some high-reliability production cannot be acqurled, the APSO-RBFNN algorithm, which was ued to fit the degradation path and predict the pseudo lifetime, was proposed. Firstly, RBFNN was trained and optimized through APSO. Then, the accuracy of trained RBFNN was tested with parts of measurements. Lastly, the RBFNN was applied to predict the degradation path of production and then evaluating the lifetimes. The proposed approach was methodologically explained and experimentally was evaluated using accelerated degradation data of some electrical connector. The lifetime of electrical conuector was successfully predicted and the average lifetime was obtained, 200412 hours.
Keywords:lifetime prediction  degradation path  APSO-RBFNN  pseudo lifetime
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《海军航空工程学院学报》浏览原始摘要信息
点击此处可从《海军航空工程学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号