首页 | 本学科首页   官方微博 | 高级检索  
     

相关向量机及其在故障诊断与预测中的应用
作者姓名:马登武  范庚  张继军
作者单位:海军航空工程学院兵器科学与技术系,山东烟台264001
摘    要:相关向量机(RVM)是一种基于稀疏Bayesian学习理论的新型机器学习方法,具有概率式输出、稀疏性强、参数设置简单、核函数选择灵活等优点,克服了人工神经网络(ANN)和支持向量机(SVM)等典型机器学习方法的诸多固有缺陷。文章从模型选择与优化、模型计算效率和模型鲁棒性改进3个方面综述了RVM的理论研究进展;总结了RVM在故障诊断与预测中的应用研究现状;分析指出了当前研究中存在的问题,并讨论了基于RVM的故障诊断与预测技术的研究方向。

关 键 词:故障诊断  故障预测  相关向量机  机器学习
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《海军航空工程学院学报》浏览原始摘要信息
点击此处可从《海军航空工程学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号