首页 | 本学科首页   官方微博 | 高级检索  
     

相关向量机及其在故障诊断与预测中的应用
引用本文:马登武,范庚,张继军. 相关向量机及其在故障诊断与预测中的应用[J]. 海军航空工程学院学报, 2013, 28(2): 154-160
作者姓名:马登武  范庚  张继军
作者单位:海军航空工程学院兵器科学与技术系,山东烟台264001
摘    要:相关向量机(RVM)是一种基于稀疏Bayesian学习理论的新型机器学习方法,具有概率式输出、稀疏性强、参数设置简单、核函数选择灵活等优点,克服了人工神经网络(ANN)和支持向量机(SVM)等典型机器学习方法的诸多固有缺陷。文章从模型选择与优化、模型计算效率和模型鲁棒性改进3个方面综述了RVM的理论研究进展;总结了RVM在故障诊断与预测中的应用研究现状;分析指出了当前研究中存在的问题,并讨论了基于RVM的故障诊断与预测技术的研究方向。

关 键 词:故障诊断  故障预测  相关向量机  机器学习

Relevance Vector Machine and Its Applications in Fault Diagnosis and Prognosis
MA Deng-wu,FAN Geng and ZHANG Ji-jun. Relevance Vector Machine and Its Applications in Fault Diagnosis and Prognosis[J]. Journal of Naval Aeronautical Engineering Institute, 2013, 28(2): 154-160
Authors:MA Deng-wu  FAN Geng  ZHANG Ji-jun
Affiliation:(Department of Ordnance Science and Technology, NAAU, Yantai Shandong, 264001, China)
Abstract:Relevance vector machine (RVM) is a new machine learning method based on sparse Bayesian learning theory, which has probabilistic oulputs, high sparsity, simple parameter tuning and flexible selection of kernel fimction. RVM has overcome many inherent defects of typical machine learning methods, such as ANN and SVM. The research progress of relevance vector machine (RVM) was summarized in model selection and optimization, model computational efficiency and model robustness improvement. The research status of applications of RVM iu fault diagnosis and prognosis was introduced. The existing problems in the current research were analyzed and the development trends of fauh diagnosis and prognosis based on RVM were discussed.
Keywords:fault diagnosis  fault prognosis  relevance vector machine  machine learning
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《海军航空工程学院学报》浏览原始摘要信息
点击此处可从《海军航空工程学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号