Detection Performance of the Cell Averaging LOG/CFAR Receiver |
| |
Authors: | Hansen V.G. Ward H.R. |
| |
Affiliation: | Raytheon Company Wayland, Mass. 01778; |
| |
Abstract: | The cell averaging LOG/CFAR receiver is a special implementation of a constant-false-alarm-rate (CFAR) receiver in which the noise level estimate is derived from a set of contiguous time samples of the output of a logarithmic (LOG) detector as obtained from a tapped delay line. This CFAR receiver is capable of operating over a larger dynamic range of noise levels than a conventional cell averaging CFAR receiver, but with somewhat poorer detectability. The performance in stationary Gaussian noise of the cell averaging LOG/CFAR receiver with no post-detection integration is determined in this paper. For a small number of reference noise samples, results were obtained by a Monte Carlo simulation using the technique of importance sampling. For a large number of reference noise samples, a second moment analysis gave the desired results. Both these results can be summarized in the following simple formula, NLOG = 1.65NLIN - 0.65, which relates the number of reference samples required by each of the two receivers for equivalent performance. Thus, for the cell averaging LOG/CFAR receiver to give the same detection performance as the conventional cell averaging CFAR receiver, the number of reference noise samples has to be increased by up to 65 percent. |
| |
Keywords: | |
|
|