首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combustion instability of pilot flame in a pilot bluff body stabilized combustor
Abstract:Combustion instability of pilot flame has been investigated in a model pilot bluff body stabilized combustor by running the pilot flame only. The primary objectives are to investigate the pilot flame dynamics and to provide bases for the study of the interaction mechanisms between the pilot flame and the main flame. Dynamic pressures are measured by dynamic pressure transducers. A high speed camera with CH*bandpass filter is used to capture the pilot flame dynamics. The proper orthogonal decomposition(POD) is used to further analyze the high speed images. With the increase of the pilot fuel mass flow rate, the pilot flame changes from stable to unstable state gradually. The combustion instability frequency is 136 Hz when the pilot flame is unstable. Numerical simulation results show that the equivalence ratios in both the shear layer and the recirculation zone increase as the pilot fuel mass flow rate increases. The mechanism of the instability of the pilot flame can be attributed to the coupling between the second order acoustic mode and the unsteady heat release due to symmetric vortex shedding. These results illustrate that the pilot fuel mass flow rate has significant influences on the dynamic stability of the pilot flame.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号