首页 | 本学科首页   官方微博 | 高级检索  
     

无阻力双星编队的满系数矩阵MIMO定量反馈控制
引用本文:张永合,梁旭文,周远强,郭延宁,马广富. 无阻力双星编队的满系数矩阵MIMO定量反馈控制[J]. 宇航学报, 2016, 37(7): 819-828. DOI: 10.3873/j.issn.1000-1328.2016.07.008
作者姓名:张永合  梁旭文  周远强  郭延宁  马广富
作者单位:1.中国科学院上海微系统与信息技术研究所,上海200050;2.中国科学院微小卫星创新研究院微小卫星联合重点实验室,上海201203; 3.上海交通大学电子信息与电气工程学院,上海200240;4.哈尔滨工业大学航天学院,哈尔滨150001
基金项目:中国科学院微小卫星联合重点实验室开放基金(KFKT15SYS1);国家重点基础研究发展规划(2012CB720000);国家自然科学基金(61403103,61174200,61304005); 中国博士后科学基金(2014M550195);中央高校基本科研业务费专项资金(HIT.NSRIF.2014035)
摘    要:研究由两颗无阻力卫星构成的、用于重力场测量的松散式编队相对位置控制方法,主要解决编队控制所产生的非重力加速度在重力场测量频带内的干扰抑制问题。首先,选取双星位置中点作为编队系统质心,建立了考虑J2摄动项的双星相对动力学模型。然后,根据定量反馈理论(QFT)确定系统在频域内的跟踪性能、鲁棒稳定性、输入干扰抑制等约束。与当前常规的对角型QFT控制器设计方法不同,本文针对编队系统的多输入多输出(MIMO)通道强耦合特性,设计了更具一般性的满系数矩阵鲁棒控制器,不但实现了闭环控制回路整定、通道解耦和稳态收敛,还有效抑制了编队控制量功率谱在科学测量频带内的干扰。最后,通过在时域中的数字仿真校验了该方法控制器的有效性和鲁棒性。

关 键 词:无阻力卫星  松散编队  定量反馈理论  干扰抑制  
收稿时间:2015-09-08

Full Matrix MIMO QFT Controller Design for Drag Free Satellites in Dual Formation
ZHANG Yong he,LIANG Xu wen,ZHOU Yuan qiang,GUO Yan ning,MA Guang fu. Full Matrix MIMO QFT Controller Design for Drag Free Satellites in Dual Formation[J]. Journal of Astronautics, 2016, 37(7): 819-828. DOI: 10.3873/j.issn.1000-1328.2016.07.008
Authors:ZHANG Yong he  LIANG Xu wen  ZHOU Yuan qiang  GUO Yan ning  MA Guang fu
Affiliation:1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;  2. Joint Key Laboratory of Microsatellites, Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201203,China;3. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;4. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract:In order to suppress the non-gravitational acceleration interference generated by formation control in the gravity measurement band, relative position control method for loose formation flying drag-free satellites applied to Earth gravimetry mission is investigated. Firstly, a relative dynamic model with J2 perturbation effect is derived based on a formation center of mass, which is located at the middle position of the two satellites. Then, the frequency domain constraints for tracking performance, robust stability and input disturbance suppression are specified based on the quantitative feedback theory (QFT). Different from the general diagonal matrix QFT controller, a fully populated robust controller matrix is designed through taking the highly-coupled multiple-input-multiple-output (MIMO) system characteristics into account. Not only loop-shaping, channel decoupling and steady convergence for closed control loop are realized, but also the power spectral density of disturbance generated by formation control is suppressed in scientific measurement band. Finally, the time domain numerical simulation is carried out to illustrate the effectiveness and robustness of the proposed controller.
Keywords:Drag-free satellite  Loose formation  Quantitative feedback theory  Disturbance suppression  
本文献已被 CNKI 等数据库收录!
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号