Abstract: | The dominant factor in determining the computation time of the Kalman filter is the dimension n of the model state vector. The number of computations per iteration is on the order of n3. Any reduction in the number of states will benefit directly in terms of increased computation time. In this paper, a high order model in integrated GPS/INS is described first, then a reduced-order model based on the high-order model, is developed. Finally, a faster tracking approach for Kalman filters is discussed. A typical aircraft trajectory is designed for a complex high-dynamic aircraft flight experiment. A Monte Carlo analysis shows that the reduced order model presented in this paper provides satisfactory accuracy for aircraft navigation |