首页 | 本学科首页   官方微博 | 高级检索  
     

有限元网格结点编号
引用本文:欧阳兴,陈中奎,施法中. 有限元网格结点编号[J]. 北京航空航天大学学报, 2002, 28(3): 339-342. DOI: 10.3969/j.issn.1001-5965.2002.03.025
作者姓名:欧阳兴  陈中奎  施法中
作者单位:北京航空航天大学,机械工程及自动化学院;北京航空航天大学,机械工程及自动化学院;北京航空航天大学,机械工程及自动化学院
基金项目:国家高技术研究发展计划(863计划);863-511-820-020;
摘    要:在有限元分析中,求解高阶线性代数方程组时整体刚度矩阵所需存储与由网格结点编号决定的顺序有关.在基于等带宽存储的求解法与基于变带宽存储的求解法的基础上推导出它们的关系.据此,提出了有限元网格结点编号的前沿法与矩形法,并给出了这两种编号法的内存消耗与结点数量的关系.理论分析和实例表明这两种编号法能有效地减少计算机内存消耗.

关 键 词:有限法  刚度矩阵  线性方程  结点编号  排序
文章编号:1001-5965(2002)03-0339-04
收稿时间:2000-10-22
修稿时间:2000-10-22

Numbering of Finite Element Mesh Nodes
OUYANG Xing,CHEN Zhong-kui,SHI Fa-zhong. Numbering of Finite Element Mesh Nodes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3): 339-342. DOI: 10.3969/j.issn.1001-5965.2002.03.025
Authors:OUYANG Xing  CHEN Zhong-kui  SHI Fa-zhong
Affiliation:Beijing University of Aeronautics and Astronautics, School of Mechanical Engineering and Automation
Abstract:In finite element analysis, the storage needed by a total stiffness matrix for solving a large scale system of linear equations is related to the sequenace determined by numbering of mesh nodes. Based on the solutions for both constant and varible bandwidth storages, their relationship is derived. On the above basis, the frontal method and rectangle method are proposed, the relationships between memory spending for both methods and amount of nodes are given. Theoretical analyzing and practical examples have proved that the two methods can efficiently decrease the memory spending of computer.
Keywords:finite element methods  stiffness matrix  linear equations  numbering of nodes  sorting
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号